⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 generalized-hierarchical-qam.htm

📁 Hierarchical-QAM的程序
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0068)http://www.ece.umn.edu/users/pavan/Generalized-Hierarchical-Qam.html -->
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=gb2312">
<META content="MSHTML 6.00.2900.2180" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff>
<CENTER>
<H4>Gray Coding</H4></CENTER>To Gray code an M-PAM constellation hierarchically, 
one can do the following: Number the points on the constellation from 0 to M-1, 
and expand them in binary (say integer B has the binary expansion (B(1) B(2) 
B(3) ... B(m)). The the corresponding gray code (G(1) G(2) G(3) ... G(m)) can be 
written using these well known equations: <BR>
<CENTER>G(1)=B(1) <BR>G(i)=xor(B(i), B(i-1)), i=2, 3, ... , m, </CENTER><BR>This 
has been done interactively by undergraduate students using the following 
programs.<BR>
<CENTER><A 
href="http://www.ece.umn.edu/users/pavan/PSK/programs/website/pam.m">pam.m</A></TR></TD><BR><A 
href="http://www.ece.umn.edu/users/pavan/PSK/programs/website/graycode.m">graycode.m</A></TR></TD><BR><A 
href="http://www.ece.umn.edu/users/pavan/PSK/programs/website/binarycode.m">binarycode.m</A></TR></TD><BR></CENTER><BR>Download 
these programs into a directory. Run "pam.m" on the MATLAB prompt. When prompted 
enter the "d" vector. The program will then plot the constellation with the gray 
codes. The following example shows hierarchical gray coding of PAMs, for a 
2/4/8-PAM example. This has not been obtained from the above programs. 
<CENTER><IMG src="Generalized-Hierarchical-Qam.files/general_8PAM.gif"> 
</CENTER><BR>
<P>QAMs can be viewed as 2 PAMs in quadrature. Gray code for a symbol in a QAM 
constellation is got by interleaving the Gray codes of its PAM equivalents, as 
(G(1_i) G(1_q) G(2_i) G(2_q) .... G(m_i) G(m_q)). This process can also be 
automated using the following MATLAB codes. <BR>
<CENTER><A 
href="http://www.ece.umn.edu/users/pavan/PSK/programs/website/qam.m">qam.m</A></TR></TD><BR><A 
href="http://www.ece.umn.edu/users/pavan/PSK/programs/website/graycode.m">graycode.m</A></TR></TD><BR><A 
href="http://www.ece.umn.edu/users/pavan/PSK/programs/website/binarycode.m">binarycode.m</A></TR></TD><BR></CENTER><BR>Download 
these into a directory. Run "qam.m" at the MATLAB prompt. Enter the inphase 
("d_i") and quadrature phase ("d_q") distance vectors when prompted. The 
following example shows a 4/16-QAM constellation with the Gray codes [1], [2]. 
The Gray codes have been derived by hand, and not using the above programs. 
<CENTER><IMG src="Generalized-Hierarchical-Qam.files/416-QAM_new.gif"> 
</CENTER><BR>
<CENTER>
<H4>MATLAB code usage </H4></CENTER>
<P>To use the recursive function, the reader first needs to define the distance 
vectors for the constellation being considered. The following examples will 
illustrate the definition of priority vector. 
<P>Let us consider the generalized 2/4/8-PAM case. <BR>The three distances 
decide the extent of unequal error protection. Distances are normalized with 
respect to the last hierarchy to get the priority vector. If we set the 
"priority_vector" as [4 2 1], then we have the special case of uniform 8-PAM. If 
we set the "priority_vector" to [10 4 1], then we have a high degree of 
variation in the performance of the LSB and the MSB. 
<P>Having decided upon the constellation, please use the priority vectors in the 
main program below. For QAMs, as shown in the paper, we normalize the distance 
vectors in both the I and Q-phases w.r.t the minimum of the I&amp;Q-distances in 
the last hierarchy. Please download the following functions, and save them in 
one directory. <BR><BR>
<CENTER><A 
href="http://www.ece.umn.edu/users/pavan/arbitrary/qam_ber.m">qam_ber.m</A></TR></TD> 
<BR><A 
href="http://www.ece.umn.edu/users/pavan/arbitrary/recurse_other.m">recurse_other.m</A></TR></TD> 
<BR><A 
href="http://www.ece.umn.edu/users/pavan/arbitrary/lsb_error_pam.m">lsb_error_pam.m</A></TR></TD> 
<BR><BR></CENTER>Please open qam_ber.m, and change the definition of the 
priority vectors on line 3 and 4 accordingly. <BR><BR>priority_vector1=[ x y 
...... 1] priority_vector2=[ x y ...... k], where k may be 1. <BR>Please turn 
"warning off" at the matlab prompt. Then run the program "qam_ber" at the matlab 
prompt. The program plots the BER for all the bits as a function of CNR from -5 
dB to 24 dB. <BR>
<P>The following link shows some numerical examples [5]: <A 
href="http://www.ece.umn.edu/users/pavan/arbitrary/uniform_final_web.html">Numerical 
Examples</A></TD><BR>
<CENTER></CENTER>
<H4>References</H4>
<CENTER></CENTER>(1) P. K. Vitthaladevuni and M. -S. Alouini, ``BER computation 
of 4/M-QAM hierarchical constellations'', Proceedings of IEEE Personal, Indoor, 
and Mobile Radio Communication Conference (PIMRC'2001), San Diego, California, 
vol. 1, pp. 85-89, October 2001. Journal version in IEEE Trans. on Broadcasting, 
vol. 47, no. 3, pp. 228-239, September 2001.<BR><BR>(2) P. K. Vitthaladevuni and 
M. -S. Alouini, ``BER computation of generalized QAM constellations'', 
Proceedings of IEEE Global Communications Conference (GLOBECOM'2001), San 
Antonio, Texas, vol. 1, pp. 632-636, November 2001. Journal version submitted to 
IEEE Trans. on Information Theory.<BR><BR>(3) L. -L. Yang and L. Hanzo, ``A 
recursive algorithm for the error probability evaluation of M-QAM'', IEEE 
Commun. Letters, vol. 4, no. 10, pp. 304-306, October 2000.<BR><BR>(4) K. Cho 
and D. Yoon, ``Bit error probability of M-ary quadrature amplitude modulation'', 
Proceedings of IEEE Veh. Technol. Conf. (VTC'2000-Fall), Boston, Massachussets, 
pp. 2422-2427, September 2000. <BR><BR>(5) P. K. Vitthaladevuni and M. -S. 
Alouini,``A new look at the exact BER evaluation of PAM, QAM and PSK 
constellations," Telektronikk: Special Issue on Information Theory and its 
Applications, vol. , No. 1, pp. - , January-March 2002. </BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -