⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rect.c

📁 空间数据库系统中著名的索引R-tree 源码
💻 C
字号:

#include <stdio.h>
#include <stdlib.h>
#include "assert.h"
#include "index.h"

#include <float.h>
#include <math.h>

#define BIG_NUM (FLT_MAX/4.0)


#define Undefined(x) ((x)->boundary[0] > (x)->boundary[NUMDIMS])
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))


/*-----------------------------------------------------------------------------
| Initialize a rectangle to have all 0 coordinates.
-----------------------------------------------------------------------------*/
void RTreeInitRect(struct Rect *R)
{
	register struct Rect *r = R;
	register int i;
	for (i=0; i<NUMSIDES; i++)
		r->boundary[i] = (RectReal)0;
}


/*-----------------------------------------------------------------------------
| Return a rect whose first low side is higher than its opposite side -
| interpreted as an undefined rect.
-----------------------------------------------------------------------------*/
struct Rect RTreeNullRect()
{
	struct Rect r;
	register int i;

	r.boundary[0] = (RectReal)1;
	r.boundary[NUMDIMS] = (RectReal)-1;
	for (i=1; i<NUMDIMS; i++)
		r.boundary[i] = r.boundary[i+NUMDIMS] = (RectReal)0;
	return r;
}


#if 0

/*-----------------------------------------------------------------------------
| Fills in random coordinates in a rectangle.
| The low side is guaranteed to be less than the high side.
-----------------------------------------------------------------------------*/
void RTreeRandomRect(struct Rect *R)
{
	register struct Rect *r = R;
	register int i;
	register RectReal width;
	for (i = 0; i < NUMDIMS; i++)
	{
		/* width from 1 to 1000 / 4, more small ones
		*/
		width = drand48() * (1000 / 4) + 1;

		/* sprinkle a given size evenly but so they stay in [0,100]
		*/
		r->boundary[i] = drand48() * (1000-width); /* low side */
		r->boundary[i + NUMDIMS] = r->boundary[i] + width; // high side
	}
}


/*-----------------------------------------------------------------------------
| Fill in the boundaries for a random search rectangle.
| Pass in a pointer to a rect that contains all the data,
| and a pointer to the rect to be filled in.
| Generated rect is centered randomly anywhere in the data area,
| and has size from 0 to the size of the data area in each dimension,
| i.e. search rect can stick out beyond data area.
-----------------------------------------------------------------------------*/
void RTreeSearchRect(struct Rect *Search, struct Rect *Data)
{
	register struct Rect *search = Search, *data = Data;
	register int i, j;
	register RectReal size, center;

	assert(search);
	assert(data);

	for (i=0; i<NUMDIMS; i++)
	{
		j = i + NUMDIMS;  // index for high side boundary
		if (data->boundary[i] > -BIG_NUM &&
		    data->boundary[j] < BIG_NUM)
		{
			size = (drand48() * (data->boundary[j] -
					 data->boundary[i] + 1)) / 2;
			center = data->boundary[i] + drand48() *
				(data->boundary[j] - data->boundary[i] + 1);
			search->boundary[i] = center - size/2;
			search->boundary[j] = center + size/2;
		}
		else  // some open boundary, search entire dimension
		{
			search->boundary[i] = -BIG_NUM;
			search->boundary[j] = BIG_NUM;
		}
	}
}

#endif

/*-----------------------------------------------------------------------------
| Print out the data for a rectangle.
-----------------------------------------------------------------------------*/
void RTreePrintRect(struct Rect *R, int depth)
{
	register struct Rect *r = R;
	register int i;
	assert(r);

	RTreeTabIn(depth);
	printf("rect:\n");
	for (i = 0; i < NUMDIMS; i++) {
		RTreeTabIn(depth+1);
		printf("%f\t%f\n", r->boundary[i], r->boundary[i + NUMDIMS]);
	}
}

/*-----------------------------------------------------------------------------
| Calculate the n-dimensional volume of a rectangle
-----------------------------------------------------------------------------*/
RectReal RTreeRectVolume(struct Rect *R)
{
	register struct Rect *r = R;
	register int i;
	register RectReal volume = (RectReal)1;

	assert(r);
	if (Undefined(r))
		return (RectReal)0;

	for(i=0; i<NUMDIMS; i++)
		volume *= r->boundary[i+NUMDIMS] - r->boundary[i];
	assert(volume >= 0.0);
	return volume;
}


/*-----------------------------------------------------------------------------
| Define the NUMDIMS-dimensional volume the unit sphere in that dimension into
| the symbol "UnitSphereVolume"
| Note that if the gamma function is available in the math library and if the
| compiler supports static initialization using functions, this is
| easily computed for any dimension. If not, the value can be precomputed and
| taken from a table. The following code can do it either way.
-----------------------------------------------------------------------------*/

#ifdef gamma

/* computes the volume of an N-dimensional sphere. */
/* derived from formule in "Regular Polytopes" by H.S.M Coxeter */
static double sphere_volume(double dimension)
{
	static const double log_pi = log(3.1415926535);
	double log_gamma, log_volume;
	log_gamma = gamma(dimension/2.0 + 1);
	log_volume = dimension/2.0 * log_pi - log_gamma;
	return exp(log_volume);
}
static const double UnitSphereVolume = sphere_volume(NUMDIMS);

#else

/* Precomputed volumes of the unit spheres for the first few dimensions */
const double UnitSphereVolumes[] = {
	0.000000,  /* dimension   0 */
	2.000000,  /* dimension   1 */
	3.141593,  /* dimension   2 */
	4.188790,  /* dimension   3 */
	4.934802,  /* dimension   4 */
	5.263789,  /* dimension   5 */
	5.167713,  /* dimension   6 */
	4.724766,  /* dimension   7 */
	4.058712,  /* dimension   8 */
	3.298509,  /* dimension   9 */
	2.550164,  /* dimension  10 */
	1.884104,  /* dimension  11 */
	1.335263,  /* dimension  12 */
	0.910629,  /* dimension  13 */
	0.599265,  /* dimension  14 */
	0.381443,  /* dimension  15 */
	0.235331,  /* dimension  16 */
	0.140981,  /* dimension  17 */
	0.082146,  /* dimension  18 */
	0.046622,  /* dimension  19 */
	0.025807,  /* dimension  20 */
};
#if NUMDIMS > 20
#	error "not enough precomputed sphere volumes"
#endif
#define UnitSphereVolume UnitSphereVolumes[NUMDIMS]

#endif


/*-----------------------------------------------------------------------------
| Calculate the n-dimensional volume of the bounding sphere of a rectangle
-----------------------------------------------------------------------------*/

#if 0
/*
 * A fast approximation to the volume of the bounding sphere for the
 * given Rect. By Paul B.
 */
RectReal RTreeRectSphericalVolume(struct Rect *R)
{
	register struct Rect *r = R;
	register int i;
	RectReal maxsize=(RectReal)0, c_size;

	assert(r);
	if (Undefined(r))
		return (RectReal)0;
	for (i=0; i<NUMDIMS; i++) {
		c_size = r->boundary[i+NUMDIMS] - r->boundary[i];
		if (c_size > maxsize)
			maxsize = c_size;
	}
	return (RectReal)(pow(maxsize/2, NUMDIMS) * UnitSphereVolume);
}
#endif

/*
 * The exact volume of the bounding sphere for the given Rect.
 */
RectReal RTreeRectSphericalVolume(struct Rect *R)
{
	register struct Rect *r = R;
	register int i;
	register double sum_of_squares=0, radius;

	assert(r);
	if (Undefined(r))
		return (RectReal)0;
	for (i=0; i<NUMDIMS; i++) {
		double half_extent =
			(r->boundary[i+NUMDIMS] - r->boundary[i]) / 2;
		sum_of_squares += half_extent * half_extent;
	}
	radius = sqrt(sum_of_squares);
	return (RectReal)(pow(radius, NUMDIMS) * UnitSphereVolume);
}


/*-----------------------------------------------------------------------------
| Calculate the n-dimensional surface area of a rectangle
-----------------------------------------------------------------------------*/
RectReal RTreeRectSurfaceArea(struct Rect *R)
{
	register struct Rect *r = R;
	register int i, j;
	register RectReal sum = (RectReal)0;

	assert(r);
	if (Undefined(r))
		return (RectReal)0;

	for (i=0; i<NUMDIMS; i++) {
		RectReal face_area = (RectReal)1;
		for (j=0; j<NUMDIMS; j++)
			/* exclude i extent from product in this dimension */
			if(i != j) {
				RectReal j_extent =
					r->boundary[j+NUMDIMS] - r->boundary[j];
				face_area *= j_extent;
			}
		sum += face_area;
	}
	return 2 * sum;
}



/*-----------------------------------------------------------------------------
| Combine two rectangles, make one that includes both.
-----------------------------------------------------------------------------*/
struct Rect RTreeCombineRect(struct Rect *R, struct Rect *Rr)
{
	register struct Rect *r = R, *rr = Rr;
	register int i, j;
	struct Rect new_rect;
	assert(r && rr);

	if (Undefined(r))
		return *rr;

	if (Undefined(rr))
		return *r;

	for (i = 0; i < NUMDIMS; i++)
	{
		new_rect.boundary[i] = MIN(r->boundary[i], rr->boundary[i]);
		j = i + NUMDIMS;
		new_rect.boundary[j] = MAX(r->boundary[j], rr->boundary[j]);
	}
	return new_rect;
}


/*-----------------------------------------------------------------------------
| Decide whether two rectangles overlap.
-----------------------------------------------------------------------------*/
int RTreeOverlap(struct Rect *R, struct Rect *S)
{
	register struct Rect *r = R, *s = S;
	register int i, j;
	assert(r && s);

	for (i=0; i<NUMDIMS; i++)
	{
		j = i + NUMDIMS;  /* index for high sides */
		if (r->boundary[i] > s->boundary[j] ||
		    s->boundary[i] > r->boundary[j])
		{
			return FALSE;
		}
	}
	return TRUE;
}


/*-----------------------------------------------------------------------------
| Decide whether rectangle r is contained in rectangle s.
-----------------------------------------------------------------------------*/
int RTreeContained(struct Rect *R, struct Rect *S)
{
	register struct Rect *r = R, *s = S;
	register int i, j, result;
	assert((int)r && (int)s);

 	// undefined rect is contained in any other
	//
	if (Undefined(r))
		return TRUE;

	// no rect (except an undefined one) is contained in an undef rect
	//
	if (Undefined(s))
		return FALSE;

	result = TRUE;
	for (i = 0; i < NUMDIMS; i++)
	{
		j = i + NUMDIMS;  /* index for high sides */
		result = result
			&& r->boundary[i] >= s->boundary[i]
			&& r->boundary[j] <= s->boundary[j];
	}
	return result;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -