📄 hpr.tex
字号:
\documentclass{article}\usepackage{german}\oddsidemargin 2.1mm\textwidth 155mm\topmargin -10mm\textheight 230mm\def\rgtbox#1#2{\phantom{#1}\hbox to0pt{\hss #2}}\begin{document}%-----------------------------------------------------------------------\subsubsection*{Computation of the View Coordinate System}Rotation matrices for the individual axes:\begin{center}\begin{tabular}{@{}c@{\qquad}c@{\qquad}c@{}}Heading & Pitch & Roll \\rotation around $z$-axis &rotation around $x$-axis &rotation around $y$-axis \\[1ex]$\displaystyle {\mathbf H} =\left(\begin{array}{rrr}\cos h & -\sin h & 0 \\\sin h & \cos h & 0 \\ 0 & 0 & 1\end{array}\right)$ &$\displaystyle {\mathbf P} =\left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & \cos p & -\sin p \\ 0 & \sin p & \cos p\end{array}\right)$ &$\displaystyle {\mathbf R} =\left(\begin{array}{rrr}\cos r & 0 & -\sin r \\ 0 & 1 & 0 \\\sin r & 0 & \cos r\end{array}\right)$\end{tabular}\end{center}Combination of the matrices for the individual axes: \quad${\mathbf M} = {\mathbf H} \cdot {\mathbf P} \cdot {\mathbf R}$. \\[1ex]First step:Compute ${\mathbf H} \cdot {\mathbf P}$.\begin{center}\begin{tabular}{@{}cl@{}}&$\displaystyle\left(\begin{array}{rrr}\rgtbox{\cos h}{1} & 0 & 0 \\0 & \cos p & \phantom{\cos h}-\sin p\\0 & \phantom{-\sin h}\sin p & \cos p\end{array}\right)$ \\[4ex]$\displaystyle\left(\begin{array}{rrr}\cos h & -\sin h & 0 \\\sin h & \cos h & 0 \\0 & 0 & 1\end{array}\right)$ &$\displaystyle\left(\begin{array}{rrr}\cos h & -\sin h \cos p & \sin h \sin p \\\sin h & \cos h \cos p & -\cos h \sin p \\0 & \sin p & \cos p\end{array}\right)$\end{tabular}\end{center}Second step:Compute $({\mathbf H} \cdot {\mathbf P}) \cdot {\mathbf R}$.\begin{center}\begin{tabular}{@{}l@{}}$\displaystyle\left(\begin{array}{rrr}\cos r & 0 & \rgtbox{-\cos h\sin r +\sin h\sin p\cos r}{$-\sin r$}\\0 & \rgtbox{-\sin h \cos p}{1} & 0\\\phantom{\cos h\cos r +\sin h\sin p}\sin r & 0 & \cos r\end{array}\right)$ \\[4ex]$\displaystyle\left(\begin{array}{rrr}\cos h\cos r +\sin h\sin p\sin r & -\sin h\cos p & -\cos h\sin r +\sin h\sin p\cos r\\\sin h\cos r -\cos h\sin p\sin r & \cos h\cos p & -\sin h\sin r -\cos h\sin p\cos r\\\cos p\sin r & \sin p & \cos p\cos r\end{array}\right)$\end{tabular}\end{center}Consequently, the axes of the view coordinate system are:\begin{eqnarray*}\vec{v}_x & = & \left(\begin{array}{r} \cos h\cos p +\sin h\sin p\sin r \\ \sin h\cos r -\cos h\sin p\sin r \\ \cos p\sin r \end{array}\right) \\\vec{v}_y & = & \left(\begin{array}{r} -\sin h\cos p \\ \cos h\cos p \\ \sin p \end{array}\right) \\\vec{v}_z & = & \left(\begin{array}{r} -\cos h\sin r +\sin h\sin p\cos r\\ -\sin h\sin r -\cos h\sin p\cos r\\ \cos p\cos r \end{array}\right)\end{eqnarray*}%-----------------------------------------------------------------------\end{document}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -