⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hpr.tex

📁 BCView - Bayes Classifier Visualization Download xbcview Linux executable (218 kb) wbcview.exe W
💻 TEX
字号:
\documentclass{article}\usepackage{german}\oddsidemargin 2.1mm\textwidth     155mm\topmargin     -10mm\textheight    230mm\def\rgtbox#1#2{\phantom{#1}\hbox to0pt{\hss #2}}\begin{document}%-----------------------------------------------------------------------\subsubsection*{Computation of the View Coordinate System}Rotation matrices for the individual axes:\begin{center}\begin{tabular}{@{}c@{\qquad}c@{\qquad}c@{}}Heading & Pitch & Roll \\rotation around $z$-axis &rotation around $x$-axis &rotation around $y$-axis \\[1ex]$\displaystyle {\mathbf H} =\left(\begin{array}{rrr}\cos h & -\sin h &       0 \\\sin h &  \cos h &       0 \\     0 &       0 &       1\end{array}\right)$ &$\displaystyle {\mathbf P} =\left(\begin{array}{rrr}     1 &       0 &       0 \\     0 &  \cos p & -\sin p \\     0 &  \sin p &  \cos p\end{array}\right)$ &$\displaystyle {\mathbf R} =\left(\begin{array}{rrr}\cos r &       0 & -\sin r \\     0 &       1 &       0 \\\sin r &       0 &  \cos r\end{array}\right)$\end{tabular}\end{center}Combination of the matrices for the individual axes: \quad${\mathbf M} = {\mathbf H} \cdot {\mathbf P} \cdot {\mathbf R}$. \\[1ex]First step:Compute ${\mathbf H} \cdot {\mathbf P}$.\begin{center}\begin{tabular}{@{}cl@{}}&$\displaystyle\left(\begin{array}{rrr}\rgtbox{\cos h}{1} & 0                       & 0 \\0                  & \cos p                  & \phantom{\cos h}-\sin p\\0                  & \phantom{-\sin h}\sin p & \cos p\end{array}\right)$ \\[4ex]$\displaystyle\left(\begin{array}{rrr}\cos h & -\sin h & 0 \\\sin h &  \cos h & 0 \\0      &  0      & 1\end{array}\right)$ &$\displaystyle\left(\begin{array}{rrr}\cos h & -\sin h \cos p &  \sin h \sin p \\\sin h &  \cos h \cos p & -\cos h \sin p \\0      &  \sin p        &  \cos p\end{array}\right)$\end{tabular}\end{center}Second step:Compute $({\mathbf H} \cdot {\mathbf P}) \cdot {\mathbf R}$.\begin{center}\begin{tabular}{@{}l@{}}$\displaystyle\left(\begin{array}{rrr}\cos r & 0 & \rgtbox{-\cos h\sin r +\sin h\sin p\cos r}{$-\sin r$}\\0      & \rgtbox{-\sin h \cos p}{1}            &       0\\\phantom{\cos h\cos r +\sin h\sin p}\sin r & 0 &  \cos r\end{array}\right)$ \\[4ex]$\displaystyle\left(\begin{array}{rrr}\cos h\cos r +\sin h\sin p\sin r &   -\sin h\cos p & -\cos h\sin r +\sin h\sin p\cos r\\\sin h\cos r -\cos h\sin p\sin r &    \cos h\cos p & -\sin h\sin r -\cos h\sin p\cos r\\\cos p\sin r                     &    \sin p       &  \cos p\cos r\end{array}\right)$\end{tabular}\end{center}Consequently, the axes of the view coordinate system are:\begin{eqnarray*}\vec{v}_x & = & \left(\begin{array}{r}                 \cos h\cos p +\sin h\sin p\sin r \\                 \sin h\cos r -\cos h\sin p\sin r \\                 \cos p\sin r                \end{array}\right) \\\vec{v}_y & = & \left(\begin{array}{r}                -\sin h\cos p \\                 \cos h\cos p \\                 \sin p                \end{array}\right) \\\vec{v}_z & = & \left(\begin{array}{r}                -\cos h\sin r +\sin h\sin p\cos r\\                -\sin h\sin r -\cos h\sin p\cos r\\                 \cos p\cos r                \end{array}\right)\end{eqnarray*}%-----------------------------------------------------------------------\end{document}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -