📄 compute_ssim_index.m
字号:
function [mssim, ssim_map] = compute_ssim_index(img1, img2, K, window, L)
%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%The author is with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University.
%
%----------------------------------------------------------------------
%Permission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
%granted, provided that this copyright notice and the original authors'
%names appear on all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
%authors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%----------------------------------------------------------------------
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error visibility to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612,
%Apr. 2004.
%
%Kindly report any suggestions or corrections to zhouwang@ieee.org
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
% (2) img2: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference). defualt value: K = [0.01 0.03]
% (4) window: local window for statistics (see the above
% reference). default widnow is Gaussian given by
% window = fspecial('gaussian', 11, 1.5);
% (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
% If one of the images being compared is regarded as
% perfect quality, then mssim can be considered as the
% quality measure of the other image.
% If img1 = img2, then mssim = 1.
% (2) ssim_map: the SSIM index map of the test image. The map
% has a smaller size than the input images. The actual size:
% size(img1) - size(window) + 1.
%
%Default Usage:
% Given 2 test images img1 and img2, whose dynamic range is 0-255
%
% [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
% User defined parameters. For example
%
% K = [0.05 0.05];
% window = ones(8);
% L = 100;
% [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
% mssim %Gives the mssim value
% imshow(max(0, ssim_map).^4) %Shows the SSIM index map
%
%========================================================================
Lmax = 1;
if (nargin < 2 | nargin > 5)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
if (size(img1) ~= size(img2))
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
[M N] = size(img1);
if (nargin == 2)
if ((M < 11) | (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5); %
K(1) = 0.01; % default settings
K(2) = 0.03; %
L = Lmax; %
end
if (nargin == 3)
if ((M < 11) | (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = Lmax;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
L = Lmax;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);
mu1 = filter2(window, img1, 'valid');
mu2 = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;
if (C1 > 0 & C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end
mssim = mean(ssim_map(:));
return
function h = fspecial(varargin)
%FSPECIAL Create 2-D special filters.
% H = FSPECIAL(TYPE) creates a two-dimensional filter H of the
% specified type. Possible values for TYPE are:
%
% 'average' averaging filter
% 'disk' circular averaging filter
% 'gaussian' Gaussian lowpass filter
% 'laplacian' filter approximating the 2-D Laplacian operator
% 'log' Laplacian of Gaussian filter
% 'motion' motion filter
% 'prewitt' Prewitt horizontal edge-emphasizing filter
% 'sobel' Sobel horizontal edge-emphasizing filter
% 'unsharp' unsharp contrast enhancement filter
%
% Depending on TYPE, FSPECIAL may take additional parameters
% which you can supply. These parameters all have default
% values.
%
% H = FSPECIAL('average',HSIZE) returns an averaging filter H of size
% HSIZE. HSIZE can be a vector specifying the number of rows and columns in
% H or a scalar, in which case H is a square matrix.
% The default HSIZE is [3 3].
%
% H = FSPECIAL('disk',RADIUS) returns a circular averaging filter
% (pillbox) within the square matrix of side 2*RADIUS+1.
% The default RADIUS is 5.
%
% H = FSPECIAL('gaussian',HSIZE,SIGMA) returns a rotationally
% symmetric Gaussian lowpass filter of size HSIZE with standard
% deviation SIGMA (positive). HSIZE can be a vector specifying the
% number of rows and columns in H or a scalar, in which case H is a
% square matrix.
% The default HSIZE is [3 3], the default SIGMA is 0.5.
%
% H = FSPECIAL('laplacian',ALPHA) returns a 3-by-3 filter
% approximating the shape of the two-dimensional Laplacian
% operator. The parameter ALPHA controls the shape of the
% Laplacian and must be in the range 0.0 to 1.0.
% The default ALPHA is 0.2.
%
% H = FSPECIAL('log',HSIZE,SIGMA) returns a rotationally symmetric
% Laplacian of Gaussian filter of size HSIZE with standard deviation
% SIGMA (positive). HSIZE can be a vector specifying the number of rows
% and columns in H or a scalar, in which case H is a square matrix.
% The default HSIZE is [5 5], the default SIGMA is 0.5.
%
% H = FSPECIAL('motion',LEN,THETA) returns a filter to approximate, once
% convolved with an image, the linear motion of a camera by LEN pixels,
% with an angle of THETA degrees in a counter-clockwise direction. The
% filter becomes a vector for horizontal and vertical motions. The
% default LEN is 9, the default THETA is 0, which corresponds to a
% horizontal motion of 9 pixels.
%
% H = FSPECIAL('prewitt') returns 3-by-3 filter that emphasizes
% horizontal edges by approximating a vertical gradient. If you need to
% emphasize vertical edges, transpose the filter H: H'.
%
% [1 1 1;0 0 0;-1 -1 -1].
%
% H = FSPECIAL('sobel') returns 3-by-3 filter that emphasizes
% horizontal edges utilizing the smoothing effect by approximating a
% vertical gradient. If you need to emphasize vertical edges, transpose
% the filter H: H'.
%
% [1 2 1;0 0 0;-1 -2 -1].
%
% H = FSPECIAL('unsharp',ALPHA) returns a 3-by-3 unsharp contrast
% enhancement filter. FSPECIAL creates the unsharp filter from the
% negative of the Laplacian filter with parameter ALPHA. ALPHA controls
% the shape of the Laplacian and must be in the range 0.0 to 1.0.
% The default ALPHA is 0.2.
%
% Class Support
% -------------
% H is of class double.
%
% Example
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -