⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 encode.c

📁 ISO mp3 sources (distribution 10) Layer 1/2/3, C Source, 512 k Sources of the Mpeg 1,2 layer 1,2
💻 C
📖 第 1 页 / 共 4 页
字号:
double FAR filter[SBLIMIT][64];{   register int i,k;    for (i=0; i<32; i++)      for (k=0; k<64; k++) {          if ((filter[i][k] = 1e9*cos((double)((2*i+1)*(16-k)*PI64))) >= 0)             modf(filter[i][k]+0.5, &filter[i][k]);          else             modf(filter[i][k]-0.5, &filter[i][k]);          filter[i][k] *= 1e-9;   }}/************************************************************************** filter_subband()** PURPOSE:  Calculates the analysis filter bank coefficients** SEMANTICS:*      The windowed samples #z# is filtered by the digital filter matrix #m#* to produce the subband samples #s#. This done by first selectively* picking out values from the windowed samples, and then multiplying* them by the filter matrix, producing 32 subband samples.*************************************************************************/ void filter_subband(z,s)double FAR z[HAN_SIZE], s[SBLIMIT];{   double y[64];   int i,j;static char init = 0;   typedef double MM[SBLIMIT][64];static MM FAR *m;#ifdef MS_DOS   long    SIZE_OF_MM;   SIZE_OF_MM      = SBLIMIT*64;   SIZE_OF_MM      *= 8;   if (!init) {       m = (MM FAR *) mem_alloc(SIZE_OF_MM, "filter");       create_ana_filter(*m);       init = 1;   }#else   if (!init) {       m = (MM FAR *) mem_alloc(sizeof(MM), "filter");       create_ana_filter(*m);       init = 1;   }#endif   for (i=0;i<64;i++) for (j=0, y[i] = 0;j<8;j++) y[i] += z[i+64*j];   for (i=0;i<SBLIMIT;i++)       for (j=0, s[i]= 0;j<64;j++) s[i] += (*m)[i][j] * y[j];}/************************************************************************* encode_info()** PURPOSE:  Puts the syncword and header information on the output* bitstream.*************************************************************************/ void encode_info(fr_ps,bs)frame_params *fr_ps;Bit_stream_struc *bs;{        layer *info = fr_ps->header;         putbits(bs,0xfff,12);                    /* syncword 12 bits */        put1bit(bs,info->version);               /* ID        1 bit  */        putbits(bs,4-info->lay,2);               /* layer     2 bits */        put1bit(bs,!info->error_protection);     /* bit set => no err prot */        putbits(bs,info->bitrate_index,4);        putbits(bs,info->sampling_frequency,2);        put1bit(bs,info->padding);        put1bit(bs,info->extension);             /* private_bit */        putbits(bs,info->mode,2);        putbits(bs,info->mode_ext,2);        put1bit(bs,info->copyright);        put1bit(bs,info->original);        putbits(bs,info->emphasis,2);} /************************************************************************** mod()** PURPOSE:  Returns the absolute value of its argument*************************************************************************/ double mod(a)double a;{    return (a > 0) ? a : -a;} /************************************************************************** I_combine_LR    (Layer I)* II_combine_LR   (Layer II)** PURPOSE:Combines left and right channels into a mono channel** SEMANTICS:  The average of left and right subband samples is put into* #joint_sample#** Layer I and II differ in frame length and # subbands used*************************************************************************/ void I_combine_LR(sb_sample, joint_sample)double FAR sb_sample[2][3][SCALE_BLOCK][SBLIMIT];double FAR joint_sample[3][SCALE_BLOCK][SBLIMIT];{   /* make a filtered mono for joint stereo */    int sb, smp;    for(sb = 0; sb<SBLIMIT; ++sb)      for(smp = 0; smp<SCALE_BLOCK; ++smp)        joint_sample[0][smp][sb] = .5 *                    (sb_sample[0][0][smp][sb] + sb_sample[1][0][smp][sb]);} void II_combine_LR(sb_sample, joint_sample, sblimit)double FAR sb_sample[2][3][SCALE_BLOCK][SBLIMIT];double FAR joint_sample[3][SCALE_BLOCK][SBLIMIT];int sblimit;{  /* make a filtered mono for joint stereo */   int sb, smp, sufr;    for(sb = 0; sb<sblimit; ++sb)      for(smp = 0; smp<SCALE_BLOCK; ++smp)         for(sufr = 0; sufr<3; ++sufr)            joint_sample[sufr][smp][sb] = .5 * (sb_sample[0][sufr][smp][sb]                                           + sb_sample[1][sufr][smp][sb]);} /************************************************************************** I_scale_factor_calc     (Layer I)* II_scale_factor_calc    (Layer II)** PURPOSE:For each subband, calculate the scale factor for each set* of the 12 subband samples** SEMANTICS:  Pick the scalefactor #multiple[]# just larger than the* absolute value of the peak subband sample of 12 samples,* and store the corresponding scalefactor index in #scalar#.** Layer II has three sets of 12-subband samples for a given* subband.*************************************************************************/ void I_scale_factor_calc(sb_sample,scalar,stereo)double FAR sb_sample[][3][SCALE_BLOCK][SBLIMIT];unsigned int scalar[][3][SBLIMIT];int stereo;{   int i,j, k;   double s[SBLIMIT];    for (k=0;k<stereo;k++) {     for (i=0;i<SBLIMIT;i++)       for (j=1, s[i] = mod(sb_sample[k][0][0][i]);j<SCALE_BLOCK;j++)         if (mod(sb_sample[k][0][j][i]) > s[i])            s[i] = mod(sb_sample[k][0][j][i]);      for (i=0;i<SBLIMIT;i++)       for (j=SCALE_RANGE-2,scalar[k][0][i]=0;j>=0;j--) /* $A 6/16/92 */         if (s[i] <= multiple[j]) {            scalar[k][0][i] = j;            break;         }   }}/******************************** Layer II ******************************/ void II_scale_factor_calc(sb_sample,scalar,stereo,sblimit)double FAR sb_sample[][3][SCALE_BLOCK][SBLIMIT];unsigned int scalar[][3][SBLIMIT];int stereo,sblimit;{  int i,j, k,t;  double s[SBLIMIT];   for (k=0;k<stereo;k++) for (t=0;t<3;t++) {    for (i=0;i<sblimit;i++)      for (j=1, s[i] = mod(sb_sample[k][t][0][i]);j<SCALE_BLOCK;j++)        if (mod(sb_sample[k][t][j][i]) > s[i])             s[i] = mod(sb_sample[k][t][j][i]);   for (i=0;i<sblimit;i++)    for (j=SCALE_RANGE-2,scalar[k][t][i]=0;j>=0;j--)    /* $A 6/16/92 */      if (s[i] <= multiple[j]) {         scalar[k][t][i] = j;         break;      }      for (i=sblimit;i<SBLIMIT;i++) scalar[k][t][i] = SCALE_RANGE-1;    }}/************************************************************************** pick_scale  (Layer II)** PURPOSE:For each subband, puts the smallest scalefactor of the 3* associated with a frame into #max_sc#.  This is used* used by Psychoacoustic Model I.* (I would recommend changin max_sc to min_sc)*************************************************************************/ void pick_scale(scalar, fr_ps, max_sc)unsigned int scalar[2][3][SBLIMIT];frame_params *fr_ps;double FAR max_sc[2][SBLIMIT];{  int i,j,k,max;  int stereo  = fr_ps->stereo;  int sblimit = fr_ps->sblimit;   for (k=0;k<stereo;k++)    for (i=0;i<sblimit;max_sc[k][i] = multiple[max],i++)      for (j=1, max = scalar[k][0][i];j<3;j++)         if (max > scalar[k][j][i]) max = scalar[k][j][i];  for (i=sblimit;i<SBLIMIT;i++) max_sc[0][i] = max_sc[1][i] = 1E-20;}/************************************************************************** put_scale   (Layer I)** PURPOSE:Sets #max_sc# to the scalefactor index in #scalar.* This is used by Psychoacoustic Model I*************************************************************************/ void put_scale(scalar, fr_ps, max_sc)unsigned int scalar[2][3][SBLIMIT];frame_params *fr_ps;double FAR max_sc[2][SBLIMIT];{   int i,j,k, max;   int stereo  = fr_ps->stereo;   int sblimit = fr_ps->sblimit;    for (k=0;k<stereo;k++) for (i=0;i<SBLIMIT;i++)        max_sc[k][i] = multiple[scalar[k][0][i]];} /************************************************************************** II_transmission_pattern (Layer II only)** PURPOSE:For a given subband, determines whether to send 1, 2, or* all 3 of the scalefactors, and fills in the scalefactor* select information accordingly** SEMANTICS:  The subbands and channels are classified based on how much* the scalefactors changes over its three values (corresponding* to the 3 sets of 12 samples per subband).  The classification* will send 1 or 2 scalefactors instead of three if the scalefactors* do not change much.  The scalefactor select information,* #scfsi#, is filled in accordingly.*************************************************************************/ void II_transmission_pattern(scalar, scfsi, fr_ps)unsigned int scalar[2][3][SBLIMIT];unsigned int scfsi[2][SBLIMIT];frame_params *fr_ps;{   int stereo  = fr_ps->stereo;   int sblimit = fr_ps->sblimit;   int dscf[2];   int class[2],i,j,k;static int pattern[5][5] = {0x123, 0x122, 0x122, 0x133, 0x123,                            0x113, 0x111, 0x111, 0x444, 0x113,                            0x111, 0x111, 0x111, 0x333, 0x113,                            0x222, 0x222, 0x222, 0x333, 0x123,                            0x123, 0x122, 0x122, 0x133, 0x123};    for (k=0;k<stereo;k++)     for (i=0;i<sblimit;i++) {       dscf[0] =  (scalar[k][0][i]-scalar[k][1][i]);       dscf[1] =  (scalar[k][1][i]-scalar[k][2][i]);       for (j=0;j<2;j++) {         if (dscf[j]<=-3) class[j] = 0;         else if (dscf[j] > -3 && dscf[j] <0) class[j] = 1;              else if (dscf[j] == 0) class[j] = 2;                   else if (dscf[j] > 0 && dscf[j] < 3) class[j] = 3;                        else class[j] = 4;       }       switch (pattern[class[0]][class[1]]) {         case 0x123 :    scfsi[k][i] = 0;                         break;         case 0x122 :    scfsi[k][i] = 3;                         scalar[k][2][i] = scalar[k][1][i];                         break;         case 0x133 :    scfsi[k][i] = 3;                         scalar[k][1][i] = scalar[k][2][i];                         break;         case 0x113 :    scfsi[k][i] = 1;                         scalar[k][1][i] = scalar[k][0][i];                         break;         case 0x111 :    scfsi[k][i] = 2;                         scalar[k][1][i] = scalar[k][2][i] = scalar[k][0][i];                         break;         case 0x222 :    scfsi[k][i] = 2;                         scalar[k][0][i] = scalar[k][2][i] = scalar[k][1][i];                         break;         case 0x333 :    scfsi[k][i] = 2;                         scalar[k][0][i] = scalar[k][1][i] = scalar[k][2][i];                         break;         case 0x444 :    scfsi[k][i] = 2;                         if (scalar[k][0][i] > scalar[k][2][i])                              scalar[k][0][i] = scalar[k][2][i];                         scalar[k][1][i] = scalar[k][2][i] = scalar[k][0][i];      }   }} /************************************************************************** I_encode_scale  (Layer I)* II_encode_scale (Layer II)** PURPOSE:The encoded scalar factor information is arranged and* queued into the output fifo to be transmitted.** For Layer II, the three scale factors associated with* a given subband and channel are transmitted in accordance* with the scfsi, which is transmitted first.*************************************************************************/ void I_encode_scale(scalar, bit_alloc, fr_ps, bs)unsigned int scalar[2][3][SBLIMIT];unsigned int bit_alloc[2][SBLIMIT];frame_params *fr_ps;Bit_stream_struc *bs;{   int stereo  = fr_ps->stereo;   int sblimit = fr_ps->sblimit;   int i,j;    for (i=0;i<SBLIMIT;i++) for (j=0;j<stereo;j++)      if (bit_alloc[j][i]) putbits(bs,scalar[j][0][i],6);} /***************************** Layer II  ********************************/ void II_encode_scale(bit_alloc, scfsi, scalar, fr_ps, bs)unsigned int bit_alloc[2][SBLIMIT], scfsi[2][SBLIMIT];unsigned int scalar[2][3][SBLIMIT];frame_params *fr_ps;Bit_stream_struc *bs;{   int stereo  = fr_ps->stereo;   int sblimit = fr_ps->sblimit;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -