⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tonal.c

📁 ISO mp3 sources (distribution 10) Layer 1/2/3, C Source, 512 k Sources of the Mpeg 1,2 layer 1,2
💻 C
📖 第 1 页 / 共 3 页
字号:
 while(first != LAST){               /* the conditions for the tonal          */    if(first<3 || first>500) run = 0;/* otherwise k+/-j will be out of bounds */    else if(first<63) run = 2;       /* components in layer II, which         */    else if(first<127) run = 3;      /* are the boundaries for calc.          */    else if(first<255) run = 6;      /* the tonal components                  */    else run = 12;    max = power[first].x - 7;        /* after calculation of tonal   */    for(j=2;j<=run;j++)              /* components, set to local max */       if(max < power[first-j].x || max < power[first+j].x){          power[first].type = FALSE;          break;       }    if(power[first].type == TONE){   /* extract tonal components */       int help=first;       if(*tone==LAST) *tone = first;       while((power[help].next!=LAST)&&(power[help].next-first)<=run)          help=power[help].next;       help=power[help].next;       power[first].next=help;       if((first-last)<=run){          if(last_but_one != LAST) power[last_but_one].next=first;       }       if(first>1 && first<500){     /* calculate the sum of the */          double tmp;                /* powers of the components */          tmp = add_db(power[first-1].x, power[first+1].x);          power[first].x = add_db(power[first].x, tmp);       }       for(j=1;j<=run;j++){          power[first-j].x = power[first+j].x = DBMIN;          power[first-j].next = power[first+j].next = STOP;          power[first-j].type = power[first+j].type = FALSE;       }       last_but_one=last;       last = first;       first = power[first].next;    }    else {       int ll;       if(last == LAST); /* *tone = power[first].next; dpwe */       else power[last].next = power[first].next;       ll = first;       first = power[first].next;       power[ll].next = STOP;    } }}/******************************************************************        This function groups all the remaining non-tonal* spectral lines into critical band where they are replaced by* one single line.*****************************************************************/        void noise_label(power, noise, ltg)g_thres FAR *ltg;mask FAR *power;int *noise;{ int i,j, centre, last = LAST; double index, weight, sum;                              /* calculate the remaining spectral */ for(i=0;i<crit_band-1;i++){  /* lines for non-tonal components   */     for(j=cbound[i],weight = 0.0,sum = DBMIN;j<cbound[i+1];j++){        if(power[j].type != TONE){           if(power[j].x != DBMIN){              sum = add_db(power[j].x,sum);/* the line below and others under the "MAKE_SENSE" condition are an alternate   interpretation of "geometric mean". This approach may make more sense but   it has not been tested with hardware. */#ifdef MAKE_SENSE/* weight += pow(10.0, power[j].x/10.0) * (ltg[power[j].map].bark-i);   bad code [SS] 21-1-93 */    weight += pow(10.0,power[j].x/10.0) * (double) (j-cbound[i]) /     (double) (cbound[i+1]-cbound[i]);  /* correction */#endif              power[j].x = DBMIN;           }        }   /*  check to see if the spectral line is low dB, and if  */     }      /* so replace the center of the critical band, which is */            /* the center freq. of the noise component              */#ifdef MAKE_SENSE     if(sum <= DBMIN)  centre = (cbound[i+1]+cbound[i]) /2;     else {        index = weight/pow(10.0,sum/10.0);        centre = cbound[i] + (int) (index * (double) (cbound[i+1]-cbound[i]) );     } #else     index = (double)( ((double)cbound[i]) * ((double)(cbound[i+1]-1)) );     centre = (int)(pow(index,0.5)+0.5);#endif    /* locate next non-tonal component until finished; */    /* add to list of non-tonal components             */#ifdef MI_OPTION     /* Masahiro Iwadare's fix for infinite looping problem? */     if(power[centre].type == TONE)        if (power[centre+1].type == TONE) centre++; else centre--;#else     /* Mike Li's fix for infinite looping problem */     if(power[centre].type == FALSE) centre++;     if(power[centre].type == NOISE){       if(power[centre].x >= ltg[power[i].map].hear){         if(sum >= ltg[power[i].map].hear) sum = add_db(power[j].x,sum);         else         sum = power[centre].x;       }     }#endif     if(last == LAST) *noise = centre;     else {        power[centre].next = LAST;        power[last].next = centre;     }     power[centre].x = sum;     power[centre].type = NOISE;             last = centre; }        }/******************************************************************        This function reduces the number of noise and tonal* component for further threshold analysis.*****************************************************************/void subsampling(power, ltg, tone, noise)mask FAR power[HAN_SIZE];g_thres FAR *ltg;int *tone, *noise;{ int i, old; i = *tone; old = STOP;    /* calculate tonal components for */ while(i!=LAST){           /* reduction of spectral lines    */    if(power[i].x < ltg[power[i].map].hear){       power[i].type = FALSE;       power[i].x = DBMIN;       if(old == STOP) *tone = power[i].next;       else power[old].next = power[i].next;    }    else old = i;    i = power[i].next; } i = *noise; old = STOP;    /* calculate non-tonal components for */ while(i!=LAST){            /* reduction of spectral lines        */    if(power[i].x < ltg[power[i].map].hear){       power[i].type = FALSE;       power[i].x = DBMIN;       if(old == STOP) *noise = power[i].next;       else power[old].next = power[i].next;    }    else old = i;    i = power[i].next; } i = *tone; old = STOP; while(i != LAST){                              /* if more than one */    if(power[i].next == LAST)break;             /* tonal component  */    if(ltg[power[power[i].next].map].bark -     /* is less than .5  */       ltg[power[i].map].bark < 0.5) {          /* bark, take the   */       if(power[power[i].next].x > power[i].x ){/* maximum          */          if(old == STOP) *tone = power[i].next;          else power[old].next = power[i].next;          power[i].type = FALSE;          power[i].x = DBMIN;          i = power[i].next;       }       else {          power[power[i].next].type = FALSE;          power[power[i].next].x = DBMIN;          power[i].next = power[power[i].next].next;          old = i;       }    }    else {      old = i;      i = power[i].next;    } }}/******************************************************************        This function calculates the individual threshold and* sum with the quiet threshold to find the global threshold.*****************************************************************/void threshold(power, ltg, tone, noise, bit_rate)mask FAR power[HAN_SIZE];g_thres FAR *ltg;int *tone, *noise, bit_rate;{ int k, t; double dz, tmps, vf; for(k=1;k<sub_size;k++){    ltg[k].x = DBMIN;    t = *tone;          /* calculate individual masking threshold for */    while(t != LAST){   /* components in order to find the global     */       if(ltg[k].bark-ltg[power[t].map].bark >= -3.0 && /*threshold (LTG)*/          ltg[k].bark-ltg[power[t].map].bark <8.0){          dz = ltg[k].bark-ltg[power[t].map].bark; /* distance of bark value*/          tmps = -1.525-0.275*ltg[power[t].map].bark - 4.5 + power[t].x;             /* masking function for lower & upper slopes */          if(-3<=dz && dz<-1) vf = 17*(dz+1)-(0.4*power[t].x +6);          else if(-1<=dz && dz<0) vf = (0.4 *power[t].x + 6) * dz;          else if(0<=dz && dz<1) vf = (-17*dz);          else if(1<=dz && dz<8) vf = -(dz-1) * (17-0.15 *power[t].x) - 17;          tmps += vf;                  ltg[k].x = add_db(ltg[k].x, tmps);       }       t = power[t].next;    }    t = *noise;        /* calculate individual masking threshold  */    while(t != LAST){  /* for non-tonal components to find LTG    */       if(ltg[k].bark-ltg[power[t].map].bark >= -3.0 &&          ltg[k].bark-ltg[power[t].map].bark <8.0){          dz = ltg[k].bark-ltg[power[t].map].bark; /* distance of bark value */          tmps = -1.525-0.175*ltg[power[t].map].bark -0.5 + power[t].x;             /* masking function for lower & upper slopes */          if(-3<=dz && dz<-1) vf = 17*(dz+1)-(0.4*power[t].x +6);          else if(-1<=dz && dz<0) vf = (0.4 *power[t].x + 6) * dz;          else if(0<=dz && dz<1) vf = (-17*dz);          else if(1<=dz && dz<8) vf = -(dz-1) * (17-0.15 *power[t].x) - 17;          tmps += vf;          ltg[k].x = add_db(ltg[k].x, tmps);       }       t = power[t].next;    }    if(bit_rate<96)ltg[k].x = add_db(ltg[k].hear, ltg[k].x);    else ltg[k].x = add_db(ltg[k].hear-12.0, ltg[k].x); }}/******************************************************************        This function finds the minimum masking threshold and* return the value to the encoder.*****************************************************************/void II_minimum_mask(ltg,ltmin,sblimit)g_thres FAR *ltg;double FAR ltmin[SBLIMIT];int sblimit;{ double min; int i,j; j=1; for(i=0;i<sblimit;i++)    if(j>=sub_size-1)                   /* check subband limit, and       */       ltmin[i] = ltg[sub_size-1].hear; /* calculate the minimum masking  */    else {                              /* level of LTMIN for each subband*/       min = ltg[j].x;       while(ltg[j].line>>4 == i && j < sub_size){       if(min>ltg[j].x)  min = ltg[j].x;       j++;    }    ltmin[i] = min; }}/*******************************************************************        This procedure is called in musicin to pick out the* smaller of the scalefactor or threshold.******************************************************************/void II_smr(ltmin, spike, scale, sblimit)double FAR spike[SBLIMIT], scale[SBLIMIT], ltmin[SBLIMIT];int sblimit;{ int i; double max;                 for(i=0;i<sblimit;i++){                     /* determine the signal   */    max = 20 * log10(scale[i] * 32768) - 10; /* level for each subband */    if(spike[i]>max) max = spike[i];         /* for the maximum scale  */    max -= ltmin[i];                         /* factors                */    ltmin[i] = max; }}        /******************************************************************        This procedure calls all the necessary functions to* complete the psychoacoustic analysis.*****************************************************************/void II_Psycho_One(buffer, scale, ltmin, fr_ps)short FAR buffer[2][1152];double FAR scale[2][SBLIMIT], ltmin[2][SBLIMIT];frame_params *fr_ps;{ layer *info = fr_ps->header; int   stereo = fr_ps->stereo; int   sblimit = fr_ps->sblimit; int k,i, tone=0, noise=0; static char init = 0; static int off[2] = {256,256}; double *sample; DSBL *spike; static D1408 *fft_buf; static mask_ptr FAR power; static g_ptr FAR ltg; sample = (double *) mem_alloc(sizeof(DFFT), "sample"); spike = (DSBL *) mem_alloc(sizeof(D2SBL), "spike");     /* call functions for critical boundaries, freq. */ if(!init){  /* bands, bark values, and mapping */    fft_buf = (D1408 *) mem_alloc((long) sizeof(D1408) * 2, "fft_buf");    power = (mask_ptr FAR ) mem_alloc(sizeof(mask) * HAN_SIZE, "power");    if (info->version == MPEG_AUDIO_ID) {      read_cbound(info->lay, info->sampling_frequency);      read_freq_band(&ltg, info->lay, info->sampling_frequency);    } else {      read_cbound(info->lay, info->sampling_frequency + 4);      read_freq_band(&ltg, info->lay, info->sampling_frequency + 4);    }    make_map(power,ltg);    for (i=0;i<1408;i++) fft_buf[0][i] = fft_buf[1][i] = 0;    init = 1; } for(k=0;k<stereo;k++){  /* check pcm input for 3 blocks of 384 samples */    for(i=0;i<1152;i++) fft_buf[k][(i+off[k])%1408]= (double)buffer[k][i]/SCALE;    for(i=0;i<FFT_SIZE;i++) sample[i] = fft_buf[k][(i+1216+off[k])%1408];    off[k] += 1152;    off[k] %= 1408;                            /* call functions for windowing PCM samples,*/    II_hann_win(sample);    /* location of spectral components in each  */    for(i=0;i<HAN_SIZE;i++) power[i].x = DBMIN;  /*subband with labeling*/    II_f_f_t(sample, power);                     /*locate remaining non-*/    II_pick_max(power, &spike[k][0]);            /*tonal sinusoidals,   */    II_tonal_label(power, &tone);                /*reduce noise & tonal */    noise_label(power, &noise, ltg);             /*components, find     */    subsampling(power, ltg, &tone, &noise);      /*global & minimal     */    threshold(power, ltg, &tone, &noise,         /*threshold, and sgnl- */      bitrate[info->version][info->lay-1][info->bitrate_index]/stereo); /*to-mask ratio*/    II_minimum_mask(ltg, &ltmin[k][0], sblimit);    II_smr(&ltmin[k][0], &spike[k][0], &scale[k][0], sblimit);         }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -