⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 psy.c

📁 ISO mp3 sources (distribution 10) Layer 1/2/3, C Source, 512 k Sources of the Mpeg 1,2 layer 1,2
💻 C
📖 第 1 页 / 共 2 页
字号:
        }     }     init++; } /************************* End of Initialization *****************************/ switch(lay) {  case 1:  case 2:     for(i=0; i<lay; i++){/***************************************************************************** * Net offset is 480 samples (1056-576) for layer 2; this is because one must* * stagger input data by 256 samples to synchronize psychoacoustic model with* * filter bank outputs, then stagger so that center of 1024 FFT window lines * * up with center of 576 "new" audio samples.                                * *                                                                           * * For layer 1, the input data still needs to be staggered by 256 samples,   * * then it must be staggered again so that the 384 "new" samples are centered* * in the 1024 FFT window.  The net offset is then 576 and you need 448 "new"* * samples for each iteration to keep the 384 samples of interest centered   * *****************************************************************************/        for(j=0; j<syncsize; j++){           if(j<(sync_flush))savebuf[j] = savebuf[j+flush];           else savebuf[j] = *buffer++;           if(j<BLKSIZE){/**window data with HANN window***********************************************/              wsamp_r[j] = window[j]*((FLOAT) savebuf[j]);              wsamp_i[j] = 0;           }        }/**Compute FFT****************************************************************/        fft(wsamp_r,wsamp_i,energy,phi,1024);/***************************************************************************** * calculate the unpredictability measure, given energy[f] and phi[f]        * *****************************************************************************//*only update data "age" pointers after you are done with both channels      *//*for layer 1 computations, for the layer 2 double computations, the pointers*//*are reset automatically on the second pass                                 */         if(lay==2 || (lay==1 && chn==0) ){           if(new==0){new = 1; oldest = 1;}           else {new = 0; oldest = 0;}           if(old==0)old = 1; else old = 0;        }        for(j=0; j<HBLKSIZE; j++){           r_prime = 2.0 * r[chn][old][j] - r[chn][oldest][j];           phi_prime = 2.0 * phi_sav[chn][old][j] - phi_sav[chn][oldest][j];           r[chn][new][j] = sqrt((double) energy[j]);           phi_sav[chn][new][j] = phi[j];temp1=r[chn][new][j] * cos((double) phi[j]) - r_prime * cos((double) phi_prime);temp2=r[chn][new][j] * sin((double) phi[j]) - r_prime * sin((double) phi_prime);           temp3=r[chn][new][j] + fabs((double)r_prime);           if(temp3 != 0)c[j]=sqrt(temp1*temp1+temp2*temp2)/temp3;           else c[j] = 0;        }/***************************************************************************** * Calculate the grouped, energy-weighted, unpredictability measure,         * * grouped_c[], and the grouped energy. grouped_e[]                          * *****************************************************************************/        for(j=1;j<CBANDS;j++){           grouped_e[j] = 0;           grouped_c[j] = 0;        }        grouped_e[0] = energy[0];        grouped_c[0] = energy[0]*c[0];        for(j=1;j<HBLKSIZE;j++){           grouped_e[partition[j]] += energy[j];           grouped_c[partition[j]] += energy[j]*c[j];        }/***************************************************************************** * convolve the grouped energy-weighted unpredictability measure             * * and the grouped energy with the spreading function, s[j][k]               * *****************************************************************************/        for(j=0;j<CBANDS;j++){           ecb[j] = 0;           cb[j] = 0;           for(k=0;k<CBANDS;k++){              if(s[j][k] != 0.0){                 ecb[j] += s[j][k]*grouped_e[k];                 cb[j] += s[j][k]*grouped_c[k];              }           }           if(ecb[j] !=0)cb[j] = cb[j]/ecb[j];           else cb[j] = 0;        }/***************************************************************************** * Calculate the required SNR for each of the frequency partitions           * *         this whole section can be accomplished by a table lookup          * *****************************************************************************/        for(j=0;j<CBANDS;j++){           if(cb[j]<.05)cb[j]=0.05;           else if(cb[j]>.5)cb[j]=0.5;           tb = -0.434294482*log((double) cb[j])-0.301029996;	   cb[j]=tb;           bc[j] = tmn[j]*tb + nmt*(1.0-tb);           k = cbval[j] + 0.5;           bc[j] = (bc[j] > bmax[k]) ? bc[j] : bmax[k];           bc[j] = exp((double) -bc[j]*LN_TO_LOG10);        }/***************************************************************************** * Calculate the permissible noise energy level in each of the frequency     * * partitions. Include absolute threshold and pre-echo controls              * *         this whole section can be accomplished by a table lookup          * *****************************************************************************/        for(j=0;j<CBANDS;j++)           if(rnorm[j] && numlines[j])              nb[j] = ecb[j]*bc[j]/(rnorm[j]*numlines[j]);           else nb[j] = 0;        for(j=0;j<HBLKSIZE;j++){/*temp1 is the preliminary threshold */           temp1=nb[partition[j]];           temp1=(temp1>absthr[j])?temp1:absthr[j];/*do not use pre-echo control for layer 2 because it may do bad things to the*//*  MUSICAM bit allocation algorithm                                         */           if(lay==1){              fthr[j] = (temp1 < lthr[chn][j]) ? temp1 : lthr[chn][j];              temp2 = temp1 * 0.00316;              fthr[j] = (temp2 > fthr[j]) ? temp2 : fthr[j];           }           else fthr[j] = temp1;           lthr[chn][j] = LXMIN*temp1;        }/***************************************************************************** * Translate the 512 threshold values to the 32 filter bands of the coder    * *****************************************************************************/        for(j=0;j<193;j += 16){           minthres = 60802371420160.0;           sum_energy = 0.0;           for(k=0;k<17;k++){              if(minthres>fthr[j+k])minthres = fthr[j+k];              sum_energy += energy[j+k];           }           snrtmp[i][j/16] = sum_energy/(minthres * 17.0);           snrtmp[i][j/16] = 4.342944819 * log((double)snrtmp[i][j/16]);        }        for(j=208;j<(HBLKSIZE-1);j += 16){           minthres = 0.0;           sum_energy = 0.0;           for(k=0;k<17;k++){              minthres += fthr[j+k];              sum_energy += energy[j+k];           }           snrtmp[i][j/16] = sum_energy/minthres;           snrtmp[i][j/16] = 4.342944819 * log((double)snrtmp[i][j/16]);        }/***************************************************************************** * End of Psychoacuostic calculation loop                                    * *****************************************************************************/     }     for(i=0; i<32; i++){        if(lay==2)           snr32[i]=(snrtmp[0][i]>snrtmp[1][i])?snrtmp[0][i]:snrtmp[1][i];        else snr32[i]=snrtmp[0][i];     }     break;  case 3:     printf("layer 3 is not currently supported\n");     break;  default:     printf("error, invalid MPEG/audio coding layer: %d\n",lay); }/* These mem_free() calls must correspond with the mem_alloc() calls     *//* used at the beginning of this function to simulate "automatic"        *//* variables placed on the stack.                                        */ mem_free((void **) &grouped_c); mem_free((void **) &grouped_e); mem_free((void **) &nb); mem_free((void **) &cb); mem_free((void **) &ecb); mem_free((void **) &bc); mem_free((void **) &wsamp_r); mem_free((void **) &wsamp_i); mem_free((void **) &phi); mem_free((void **) &energy); mem_free((void **) &c); mem_free((void **) &fthr); mem_free((void **) &snrtmp);}/******************************************************************************routine to read in absthr table from a file.******************************************************************************/void read_absthr(absthr, table)FLOAT *absthr;int table;{ FILE *fp; long j,index; float a; char t[80]; char ta[16]; strcpy( ta, "absthr_0" );  switch(table){    case 0 : ta[7] = '0';             break;    case 1 : ta[7] = '1';             break;    case 2 : ta[7] = '2';             break;    default : printf("absthr table: Not valid table number\n"); } if(!(fp = OpenTableFile(ta) ) ){    printf("Please check %s table\n", ta);    exit(1); } fgets(t, 150, fp); sscanf(t, "table %ld", &index); if(index != table){    printf("error in absthr table %s",ta);    exit(1); } for(j=0; j<HBLKSIZE; j++){    fgets(t,80,fp);    sscanf(t,"%f", &a);    absthr[j] =  a; } fclose(fp);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -