⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cantilever_beam.m

📁 HERE IS A GOOD PSO TOOL BOX
💻 M
字号:
% Design of a cantilever beam (recursive formulation)% Section 4.5.4, pp. 163-165 in Boyd & Vandenberghe "Convex Optimization"% (a figure is generated)%% We have a segmented cantilever beam with N segments. Each segment% has a unit length and variable width and height (rectangular profile).% The goal is minimize the total volume of the beam, over all segment% widths w_i and heights h_i, subject to constraints on aspect ratios,% maximum allowable stress in the material, vertical deflection y, etc.%% The problem can be posed as a geometric program (posynomial form)%     minimize   sum( w_i* h_i)%         s.t.   w_min <= w_i <= w_max,       for all i = 1,...,N%                h_min <= h_i <= h_max%                S_min <= h_i/w_i <= S_max%                6*i*F/(w_i*h_i^2) <= sigma_max%                y_1 <= y_max%% with variables w_i and h_i (i = 1,...,N).% For other definitions consult the book.% (See exercise 4.31 for a non-recursive formulation.)%% Almir Mutapcic 01/25/06% optimization variablesN = 8;gpvar w(N) h(N);% constantswmin = .1; wmax = 100;hmin = .1; hmax = 6;Smin = 1/5; Smax = 5;sigma_max = 1;ymax = 10;E = 1; F = 1;% objective is the total volume of the beam% obj = sum of (widths*heights*lengths) over each section% (recall that the length of each segment is set to be 1)obj = w'*h; % recursive formulationv = posynomial; y = posynomial; % create empty posynomialsv(N+1,1) = 0; y(N+1,1) = 0;for i = N:-1:1  disp(['Processing recursion number: ' num2str(i)])  v(i) = 12*(i-1/2)*F/(E*w(i)*h(i)^3) + v(i+1);  y(i) = 6*(i-1/3)*F/(E*w(i)*h(i)^3)  + v(i+1) + y(i+1);end% constraint setconstr = [ ...  wmin*ones(N,1) <= w; w <= wmax*ones(N,1);  hmin*ones(N,1) <= h; h <= hmax*ones(N,1);  Smin*ones(N,1) <= h./w; h./w <= Smax*ones(N,1);  6*F*[1:N]'./(w.*(h.^2)) <= sigma_max*ones(N,1);  y(1) <= ymax;];% solve GP and compute the optimal volume[obj_value, solution, status] = gpsolve(obj, constr);assign(solution);% display resultsdisp('The optimal widths and heights are: ');w, hfprintf(1,'The optimal minimum volume of the beam is %3.4f\n', sum(w.*h))% plot the 3D model of the optimal cantilever beamclose all;plot_cbeam([h; w])

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -