📄 quadcurve2d.java
字号:
boolean include1 = ((y1 - y2) * (ctrly - y2) >= 0); double eqn[] = new double[3]; double res[] = new double[3]; fillEqn(eqn, y, y1, ctrly, y2); int roots = solveQuadratic(eqn, res); roots = evalQuadratic(res, roots, include0, include1, eqn, x1, ctrlx, x2); while (--roots >= 0) { if (x < res[roots]) { crossings++; } } return ((crossings & 1) == 1); } /** * Tests if a specified <code>Point2D</code> is inside the boundary of * the shape of this <code>QuadCurve2D</code>. * @param p the specified <code>Point2D</code> * @return <code>true</code> if the specified <code>Point2D</code> is * inside the boundary of the shape of this * <code>QuadCurve2D</code>. */ public boolean contains(Point2D p) { return contains(p.getX(), p.getY()); } /* * Fill an array with the coefficients of the parametric equation * in t, ready for solving against val with solveQuadratic. * We currently have: * val = Py(t) = C1*(1-t)^2 + 2*CP*t*(1-t) + C2*t^2 * = C1 - 2*C1*t + C1*t^2 + 2*CP*t - 2*CP*t^2 + C2*t^2 * = C1 + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2 * 0 = (C1 - val) + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2 * 0 = C + Bt + At^2 * C = C1 - val * B = 2*CP - 2*C1 * A = C1 - 2*CP + C2 */ private static void fillEqn(double eqn[], double val, double c1, double cp, double c2) { eqn[0] = c1 - val; eqn[1] = cp + cp - c1 - c1; eqn[2] = c1 - cp - cp + c2; return; } /* * Evaluate the t values in the first num slots of the vals[] array * and place the evaluated values back into the same array. Only * evaluate t values that are within the range <0, 1>, including * the 0 and 1 ends of the range iff the include0 or include1 * booleans are true. If an "inflection" equation is handed in, * then any points which represent a point of inflection for that * quadratic equation are also ignored. */ private static int evalQuadratic(double vals[], int num, boolean include0, boolean include1, double inflect[], double c1, double ctrl, double c2) { int j = 0; for (int i = 0; i < num; i++) { double t = vals[i]; if ((include0 ? t >= 0 : t > 0) && (include1 ? t <= 1 : t < 1) && (inflect == null || inflect[1] + 2*inflect[2]*t != 0)) { double u = 1 - t; vals[j++] = c1*u*u + 2*ctrl*t*u + c2*t*t; } } return j; } private static final int BELOW = -2; private static final int LOWEDGE = -1; private static final int INSIDE = 0; private static final int HIGHEDGE = 1; private static final int ABOVE = 2; /* * Determine where coord lies with respect to the range from * low to high. It is assumed that low <= high. The return * value is one of the 5 values BELOW, LOWEDGE, INSIDE, HIGHEDGE, * or ABOVE. */ private static int getTag(double coord, double low, double high) { if (coord <= low) { return (coord < low ? BELOW : LOWEDGE); } if (coord >= high) { return (coord > high ? ABOVE : HIGHEDGE); } return INSIDE; } /* * Determine if the pttag represents a coordinate that is already * in its test range, or is on the border with either of the two * opttags representing another coordinate that is "towards the * inside" of that test range. In other words, are either of the * two "opt" points "drawing the pt inward"? */ private static boolean inwards(int pttag, int opt1tag, int opt2tag) { switch (pttag) { case BELOW: case ABOVE: default: return false; case LOWEDGE: return (opt1tag >= INSIDE || opt2tag >= INSIDE); case INSIDE: return true; case HIGHEDGE: return (opt1tag <= INSIDE || opt2tag <= INSIDE); } } /** * Tests if the shape of this <code>QuadCurve2D</code> intersects the * interior of a specified set of rectangular coordinates. * @param x, y the coordinates of the upper-left corner of the * specified rectangular area * @param w the width of the specified rectangular area * @param h the height of the specified rectangular area * @return <code>true</code> if the shape of this * <code>QuadCurve2D</code> intersects the interior of the * specified set of rectangular coordinates; * <code>false</code> otherwise. */ public boolean intersects(double x, double y, double w, double h) { // Trivially reject non-existant rectangles if (w < 0 || h < 0) { return false; } // Trivially accept if either endpoint is inside the rectangle // (not on its border since it may end there and not go inside) // Record where they lie with respect to the rectangle. // -1 => left, 0 => inside, 1 => right double x1 = getX1(); double y1 = getY1(); int x1tag = getTag(x1, x, x+w); int y1tag = getTag(y1, y, y+h); if (x1tag == INSIDE && y1tag == INSIDE) { return true; } double x2 = getX2(); double y2 = getY2(); int x2tag = getTag(x2, x, x+w); int y2tag = getTag(y2, y, y+h); if (x2tag == INSIDE && y2tag == INSIDE) { return true; } double ctrlx = getCtrlX(); double ctrly = getCtrlY(); int ctrlxtag = getTag(ctrlx, x, x+w); int ctrlytag = getTag(ctrly, y, y+h); // Trivially reject if all points are entirely to one side of // the rectangle. if (x1tag < INSIDE && x2tag < INSIDE && ctrlxtag < INSIDE) { return false; // All points left } if (y1tag < INSIDE && y2tag < INSIDE && ctrlytag < INSIDE) { return false; // All points above } if (x1tag > INSIDE && x2tag > INSIDE && ctrlxtag > INSIDE) { return false; // All points right } if (y1tag > INSIDE && y2tag > INSIDE && ctrlytag > INSIDE) { return false; // All points below } // Test for endpoints on the edge where either the segment // or the curve is headed "inwards" from them // Note: These tests are a superset of the fast endpoint tests // above and thus repeat those tests, but take more time // and cover more cases if (inwards(x1tag, x2tag, ctrlxtag) && inwards(y1tag, y2tag, ctrlytag)) { // First endpoint on border with either edge moving inside return true; } if (inwards(x2tag, x1tag, ctrlxtag) && inwards(y2tag, y1tag, ctrlytag)) { // Second endpoint on border with either edge moving inside return true; } // Trivially accept if endpoints span directly across the rectangle boolean xoverlap = (x1tag * x2tag <= 0); boolean yoverlap = (y1tag * y2tag <= 0); if (x1tag == INSIDE && x2tag == INSIDE && yoverlap) { return true; } if (y1tag == INSIDE && y2tag == INSIDE && xoverlap) { return true; } // We now know that both endpoints are outside the rectangle // but the 3 points are not all on one side of the rectangle. // Therefore the curve cannot be contained inside the rectangle, // but the rectangle might be contained inside the curve, or // the curve might intersect the boundary of the rectangle. double[] eqn = new double[3]; double[] res = new double[3]; if (!yoverlap) { // Both y coordinates for the closing segment are above or // below the rectangle which means that we can only intersect // if the curve crosses the top (or bottom) of the rectangle // in more than one place and if those crossing locations // span the horizontal range of the rectangle. fillEqn(eqn, (y1tag < INSIDE ? y : y+h), y1, ctrly, y2); return (solveQuadratic(eqn, res) == 2 && evalQuadratic(res, 2, true, true, null, x1, ctrlx, x2) == 2 && getTag(res[0], x, x+w) * getTag(res[1], x, x+w) <= 0); } // Y ranges overlap. Now we examine the X ranges if (!xoverlap) { // Both x coordinates for the closing segment are left of // or right of the rectangle which means that we can only // intersect if the curve crosses the left (or right) edge // of the rectangle in more than one place and if those // crossing locations span the vertical range of the rectangle. fillEqn(eqn, (x1tag < INSIDE ? x : x+w), x1, ctrlx, x2); return (solveQuadratic(eqn, res) == 2 && evalQuadratic(res, 2, true, true, null, y1, ctrly, y2) == 2 && getTag(res[0], y, y+h) * getTag(res[1], y, y+h) <= 0); } // The X and Y ranges of the endpoints overlap the X and Y // ranges of the rectangle, now find out how the endpoint // line segment intersects the Y range of the rectangle double dx = x2 - x1; double dy = y2 - y1; double k = y2 * x1 - x2 * y1; int c1tag, c2tag; if (y1tag == INSIDE) { c1tag = x1tag; } else { c1tag = getTag((k + dx * (y1tag < INSIDE ? y : y+h)) / dy, x, x+w); } if (y2tag == INSIDE) { c2tag = x2tag; } else { c2tag = getTag((k + dx * (y2tag < INSIDE ? y : y+h)) / dy, x, x+w); } // If the part of the line segment that intersects the Y range // of the rectangle crosses it horizontally - trivially accept if (c1tag * c2tag <= 0) { return true; } // Now we know that both the X and Y ranges intersect and that // the endpoint line segment does not directly cross the rectangle. // // We can almost treat this case like one of the cases above // where both endpoints are to one side, except that we will // only get one intersection of the curve with the vertical // side of the rectangle. This is because the endpoint segment // accounts for the other intersection. // // (Remember there is overlap in both the X and Y ranges which // means that the segment must cross at least one vertical edge // of the rectangle - in particular, the "near vertical side" - // leaving only one intersection for the curve.) // // Now we calculate the y tags of the two intersections on the // "near vertical side" of the rectangle. We will have one with // the endpoint segment, and one with the curve. If those two // vertical intersections overlap the Y range of the rectangle, // we have an intersection. Otherwise, we don't. // c1tag = vertical intersection class of the endpoint segment // // Choose the y tag of the endpoint that was not on the same // side of the rectangle as the subsegment calculated above. // Note that we can "steal" the existing Y tag of that endpoint // since it will be provably the same as the vertical intersection. c1tag = ((c1tag * x1tag <= 0) ? y1tag : y2tag); // c2tag = vertical intersection class of the curve // // We have to calculate this one the straightforward way. // Note that the c2tag can still tell us which vertical edge // to test against. fillEqn(eqn, (c2tag < INSIDE ? x : x+w), x1, ctrlx, x2); int num = solveQuadratic(eqn, res); // Note: We should be able to assert(num == 2); since the // X range "crosses" (not touches) the vertical boundary, // but we pass num to evalQuadratic for completeness. evalQuadratic(res, num, true, true, null, y1, ctrly, y2); // Note: We can assert(num evals == 1); since one of the // 2 crossings will be out of the [0,1] range. c2tag = getTag(res[0], y, y+h); // Finally, we have an intersection if the two crossings // overlap the Y range of the rectangle. return (c1tag * c2tag <= 0); } /** * Tests if the shape of this <code>QuadCurve2D</code> intersects the * interior of a specified <code>Rectangle2D</code>. * @param r the specified <code>Rectangle2D</code> * @return <code>true</code> if the shape of this * <code>QuadCurve2D</code> intersects the interior of * the specified <code>Rectangle2D</code>; * <code>false</code> otherwise. */ public boolean intersects(Rectangle2D r) { return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * Tests if the interior of the shape of this * <code>QuadCurve2D</code> entirely contains the specified * set of rectangular coordinates. * @param x, y the coordinates of the upper-left corner of the * specified rectangular area * @param w the width of the specified rectangular area * @param h the height of the specified rectangular area * @return <code>true</code> if the interior of the shape of this * <code>QuadCurve2D</code> entirely contains the specified * rectangluar area; <code>false</code> otherwise. */ public boolean contains(double x, double y, double w, double h) { // Assertion: Quadratic curves closed by connecting their // endpoints are always convex. return (contains(x, y) && contains(x + w, y) && contains(x + w, y + h) && contains(x, y + h)); } /** * Tests if the interior of the shape of this * <code>QuadCurve2D</code> entirely contains the specified * <code>Rectangle2D</code>. * @param r the specified <code>Rectangle2D</code> * @return <code>true</code> if the interior of the shape of this * <code>QuadCurve2D</code> entirely contains the specified * <code>Rectangle2D</code>; <code>false</code> otherwise. */ public boolean contains(Rectangle2D r) { return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * Returns the bounding box of this <code>QuadCurve2D</code>. * @return a {@link Rectangle} that is the bounding box of the shape * of this <code>QuadCurve2D</code>. */ public Rectangle getBounds() { return getBounds2D().getBounds(); } /** * Returns an iteration object that defines the boundary of the * shape of this <code>QuadCurve2D</code>. * The iterator for this class is not multi-threaded safe, * which means that this <code>QuadCurve2D</code> class does not * guarantee that modifications to the geometry of this * <code>QuadCurve2D</code> object do not affect any iterations of * that geometry that are already in process. * @param at an optional {@link AffineTransform} to apply to the * shape boundary * @return a {@link PathIterator} object that defines the boundary * of the shape. */ public PathIterator getPathIterator(AffineTransform at) { return new QuadIterator(this, at); } /** * Returns an iteration object that defines the boundary of the * flattened shape of this <code>QuadCurve2D</code>. * The iterator for this class is not multi-threaded safe, * which means that this <code>QuadCurve2D</code> class does not * guarantee that modifications to the geometry of this * <code>QuadCurve2D</code> object do not affect any iterations of * that geometry that are already in process. * @param at an optional <code>AffineTransform</code> to apply * to the boundary of the shape * @param flatness the maximum distance that the control points for a * subdivided curve can be with respect to a line connecting * the endpoints of this curve before this curve is * replaced by a straight line connecting the endpoints. * @return a <code>PathIterator</code> object that defines the * flattened boundary of the shape. */ public PathIterator getPathIterator(AffineTransform at, double flatness) { return new FlatteningPathIterator(getPathIterator(at), flatness); } /** * Creates a new object of the same class and with the same contents * as this object. * * @return a clone of this instance. * @exception OutOfMemoryError if there is not enough memory. * @see java.lang.Cloneable * @since 1.2 */ public Object clone() { try { return super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -