📄 bpdetail.m
字号:
%严格按照BP网络计算公式来设计的一个matlab程序,对BP网络进行了优化设计
%优化1:设计了yyy,即在o(k)计算公式时,当网络进入平坦区时(<0.0001)学习率加大, 出来后学习率又还原 P68 3.30
%优化2:v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 参照了P67 3.29
clear all
clc
inputNums=3; %输入层节点
outputNums=3; %输出层节点
hideNums=10; %隐层节点数
maxcount=20000; %最大迭代次数
samplenum=3; %一个计数器,无意义
precision=0.001; %预设精度
yyy=1.3; %yyy是帮助网络加速走出平坦区
alpha=0.01; %学习率设定值
a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改
error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间
errorp=zeros(1,samplenum);%同上
v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入层到隐层的权值
deltv=zeros(inputNums,hideNums); %3*10;内存空间预分配
dv=zeros(inputNums,hideNums); %3*10;
w=rand(hideNums,outputNums); %10*3;同V
deltw=zeros(hideNums,outputNums);%10*3
dw=zeros(hideNums,outputNums); %10*3
samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;指定输入值3*3(实为3个向量)
expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;期望输出值3*3(实为3个向量),有导师的监督学习
count=1;
while (count<=maxcount) %结束条件1迭代2000次
c=1;
while (c<=samplenum)
for k=1:outputNums
d(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内 的值
end
for i=1:inputNums
x(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量
end
%Forward();
for j=1:hideNums
net=0.0;
for i=1:inputNums
net=net+x(i)*v(i,j);%输入层到隐层的加权和∑X(i)V(i) 3.11
end
y(j)=1/(1+exp(-net)); %输出层处理f(x)=1/(1+exp(-x))单极性sigmiod函数 3.14
end
for k=1:outputNums
net=0.0;
for j=1:hideNums
net=net+y(j)*w(j,k);
end
if count>=2&&error(count)-error(count+1)<=0.0001
o(k)=1/(1+exp(-net)/yyy);
else o(k)=1/(1+exp(-net)); %同上
end
end
%BpError(c)反馈/修改;
errortmp=0.0;
for k=1:outputNums
errortmp=errortmp+(d(k)-o(k))^2; %第一组训练后的误差计算
end
errorp(c)=0.5*errortmp; %误差E=∑(d(k)-o(k))^2 * 1/2 3.15
%end
%Backward();
for k=1:outputNums
yitao(k)=(d(k)-o(k))*o(k)*(1-o(k)); %输入层误差偏导 3.25a
end
for j=1:hideNums
tem=0.0;
for k=1:outputNums
tem=tem+yitao(k)*w(j,k); %为了求隐层偏导,而计算的∑
end
yitay(j)=tem*y(j)*(1-y(j)); %隐层偏导 3.25b
end
%调整各层权值
for j=1:hideNums
for k=1:outputNums
deltw(j,k)=alpha*yitao(k)*y(j); %权值w的调整量deltw(已乘学习率)3.26a
w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);%权值调整,这里的dw=dletw(t-1),实际是对BP算法的一个
dw(j,k)=deltw(j,k); %改进措施--增加动量项目的是提高训练速度
end %3.29
end
for i=1:inputNums
for j=1:hideNums
deltv(i,j)=alpha*yitay(j)*x(i); %同上deltw
v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);
dv(i,j)=deltv(i,j);
end
end
c=c+1;
end%第二个while结束;表示一次BP训练结束
double tmp;
tmp=0.0;
for i=1:samplenum
tmp=tmp+errorp(i)*errorp(i);%误差求和
end
tmp=tmp/c;
error(count)=sqrt(tmp);%误差求均方根,即精度
if (error(count)<precision)%另一个结束条件
break;
end
count=count+1;%训练次数加1
end%第一个while结束
error(maxcount+1)=error(maxcount);
p=1:count;
pp=p/50;
plot(pp,error(p),'-'); %显示误差
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -