⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 floatlib.c

📁 GUN开源阻止下的编译器GCC
💻 C
字号:
/*** libgcc support for software floating point.** Copyright (C) 1991 by Pipeline Associates, Inc.  All rights reserved.** Permission is granted to do *anything* you want with this file,** commercial or otherwise, provided this message remains intact.  So there!** I would appreciate receiving any updates/patches/changes that anyone** makes, and am willing to be the repository for said changes (am I** making a big mistake?).Warning! Only single-precision is actually implemented.  This filewon't really be much use until double-precision is supported.However, once that is done, this file might eventually become areplacement for libgcc1.c.  It might also make possiblecross-compilation for an IEEE target machine from a non-IEEEhost such as a VAX.If you'd like to work on completing this, please talk to rms@gnu.ai.mit.edu.**** Pat Wood** Pipeline Associates, Inc.** pipeline!phw@motown.com or** sun!pipeline!phw or** uunet!motown!pipeline!phw**** 05/01/91 -- V1.0 -- first release to gcc mailing lists** 05/04/91 -- V1.1 -- added float and double prototypes and return values**                  -- fixed problems with adding and subtracting zero**                  -- fixed rounding in truncdfsf2**                  -- fixed SWAP define and tested on 386*//*** The following are routines that replace the libgcc soft floating point** routines that are called automatically when -msoft-float is selected.** The support single and double precision IEEE format, with provisions** for byte-swapped machines (tested on 386).  Some of the double-precision** routines work at full precision, but most of the hard ones simply punt** and call the single precision routines, producing a loss of accuracy.** long long support is not assumed or included.** Overall accuracy is close to IEEE (actually 68882) for single-precision** arithmetic.  I think there may still be a 1 in 1000 chance of a bit** being rounded the wrong way during a multiply.  I'm not fussy enough to** bother with it, but if anyone is, knock yourself out.**** Efficiency has only been addressed where it was obvious that something** would make a big difference.  Anyone who wants to do this right for** best speed should go in and rewrite in assembler.**** I have tested this only on a 68030 workstation and 386/ix integrated** in with -msoft-float.*//* the following deal with IEEE single-precision numbers */#define EXCESS		126#define SIGNBIT		0x80000000#define HIDDEN		(1 << 23)#define SIGN(fp)	((fp) & SIGNBIT)#define EXP(fp)		(((fp) >> 23) & 0xFF)#define MANT(fp)	(((fp) & 0x7FFFFF) | HIDDEN)#define PACK(s,e,m)	((s) | ((e) << 23) | (m))/* the following deal with IEEE double-precision numbers */#define EXCESSD		1022#define HIDDEND		(1 << 20)#define EXPD(fp)	(((fp.l.upper) >> 20) & 0x7FF)#define SIGND(fp)	((fp.l.upper) & SIGNBIT)#define MANTD(fp)	(((((fp.l.upper) & 0xFFFFF) | HIDDEND) << 10) | \				(fp.l.lower >> 22))/* define SWAP for 386/960 reverse-byte-order brain-damaged CPUs */union double_long  {    double d;#ifdef SWAP    struct {      unsigned long lower;      long upper;    } l;#else    struct {      long upper;      unsigned long lower;    } l;#endif  };union float_long  {    float f;    long l;  };/* add two floats */float__addsf3 (float a1, float a2){  register long mant1, mant2;  register union float_long fl1, fl2;  register int exp1, exp2;  int sign = 0;  fl1.f = a1;  fl2.f = a2;  /* check for zero args */  if (!fl1.l)    return (fl2.f);  if (!fl2.l)    return (fl1.f);  exp1 = EXP (fl1.l);  exp2 = EXP (fl2.l);  if (exp1 > exp2 + 25)    return (fl1.l);  if (exp2 > exp1 + 25)    return (fl2.l);  /* do everything in excess precision so's we can round later */  mant1 = MANT (fl1.l) << 6;  mant2 = MANT (fl2.l) << 6;  if (SIGN (fl1.l))    mant1 = -mant1;  if (SIGN (fl2.l))    mant2 = -mant2;  if (exp1 > exp2)    {      mant2 >>= exp1 - exp2;    }  else    {      mant1 >>= exp2 - exp1;      exp1 = exp2;    }  mant1 += mant2;  if (mant1 < 0)    {      mant1 = -mant1;      sign = SIGNBIT;    }  else if (!mant1)    return (0);  /* normalize up */  while (!(mant1 & 0xE0000000))    {      mant1 <<= 1;      exp1--;    }  /* normalize down? */  if (mant1 & (1 << 30))    {      mant1 >>= 1;      exp1++;    }  /* round to even */  mant1 += (mant1 & 0x40) ? 0x20 : 0x1F;  /* normalize down? */  if (mant1 & (1 << 30))    {      mant1 >>= 1;      exp1++;    }  /* lose extra precision */  mant1 >>= 6;  /* turn off hidden bit */  mant1 &= ~HIDDEN;  /* pack up and go home */  fl1.l = PACK (sign, exp1, mant1);  return (fl1.f);}/* subtract two floats */float__subsf3 (float a1, float a2){  register union float_long fl1, fl2;  fl1.f = a1;  fl2.f = a2;  /* check for zero args */  if (!fl2.l)    return (fl1.f);  if (!fl1.l)    return (-fl2.f);  /* twiddle sign bit and add */  fl2.l ^= SIGNBIT;  return __addsf3 (a1, fl2.f);}/* compare two floats */long__cmpsf2 (float a1, float a2){  register union float_long fl1, fl2;  fl1.f = a1;  fl2.f = a2;  if (SIGN (fl1.l) && SIGN (fl2.l))    {      fl1.l ^= SIGNBIT;      fl2.l ^= SIGNBIT;    }  if (fl1.l < fl2.l)    return (-1);  if (fl1.l > fl2.l)    return (1);  return (0);}/* multiply two floats */float__mulsf3 (float a1, float a2){  register union float_long fl1, fl2;  register unsigned long result;  register int exp;  int sign;  fl1.f = a1;  fl2.f = a2;  if (!fl1.l || !fl2.l)    return (0);  /* compute sign and exponent */  sign = SIGN (fl1.l) ^ SIGN (fl2.l);  exp = EXP (fl1.l) - EXCESS;  exp += EXP (fl2.l);  fl1.l = MANT (fl1.l);  fl2.l = MANT (fl2.l);  /* the multiply is done as one 16x16 multiply and two 16x8 multiples */  result = (fl1.l >> 8) * (fl2.l >> 8);  result += ((fl1.l & 0xFF) * (fl2.l >> 8)) >> 8;  result += ((fl2.l & 0xFF) * (fl1.l >> 8)) >> 8;  if (result & 0x80000000)    {      /* round */      result += 0x80;      result >>= 8;    }  else    {      /* round */      result += 0x40;      result >>= 7;      exp--;    }  result &= ~HIDDEN;  /* pack up and go home */  fl1.l = PACK (sign, exp, result);  return (fl1.f);}/* divide two floats */float__divsf3 (float a1, float a2){  register union float_long fl1, fl2;  register int result;  register int mask;  register int exp, sign;  fl1.f = a1;  fl2.f = a2;  /* subtract exponents */  exp = EXP (fl1.l) - EXP (fl2.l) + EXCESS;  /* compute sign */  sign = SIGN (fl1.l) ^ SIGN (fl2.l);  /* divide by zero??? */  if (!fl2.l)    /* return NaN or -NaN */    return (sign ? 0xFFFFFFFF : 0x7FFFFFFF);  /* numerator zero??? */  if (!fl1.l)    return (0);  /* now get mantissas */  fl1.l = MANT (fl1.l);  fl2.l = MANT (fl2.l);  /* this assures we have 25 bits of precision in the end */  if (fl1.l < fl2.l)    {      fl1.l <<= 1;      exp--;    }  /* now we perform repeated subtraction of fl2.l from fl1.l */  mask = 0x1000000;  result = 0;  while (mask)    {      if (fl1.l >= fl2.l)	{	  result |= mask;	  fl1.l -= fl2.l;	}      fl1.l <<= 1;      mask >>= 1;    }  /* round */  result += 1;  /* normalize down */  exp++;  result >>= 1;  result &= ~HIDDEN;  /* pack up and go home */  fl1.l = PACK (sign, exp, result);  return (fl1.f);}/* convert int to double */double__floatsidf (register long a1){  register int sign = 0, exp = 31 + EXCESSD;  union double_long dl;  if (!a1)    {      dl.l.upper = dl.l.lower = 0;      return (dl.d);    }  if (a1 < 0)    {      sign = SIGNBIT;      a1 = -a1;    }  while (a1 < 0x1000000)    {      a1 <<= 4;      exp -= 4;    }  while (a1 < 0x40000000)    {      a1 <<= 1;      exp--;    }  /* pack up and go home */  dl.l.upper = sign;  dl.l.upper |= exp << 20;  dl.l.upper |= (a1 >> 10) & ~HIDDEND;  dl.l.lower = a1 << 22;  return (dl.d);}/* negate a float */float__negsf2 (float a1){  register union float_long fl1;  fl1.f = a1;  if (!fl1.l)    return (0);  fl1.l ^= SIGNBIT;  return (fl1.f);}/* negate a double */double__negdf2 (double a1){  register union double_long dl1;  dl1.d = a1;  if (!dl1.l.upper && !dl1.l.lower)      return (dl1.d);  dl1.l.upper ^= SIGNBIT;  return (dl1.d);}/* convert float to double */double__extendsfdf2 (float a1){  register union float_long fl1;  register union double_long dl;  register int exp;  fl1.f = a1;  if (!fl1.l)    {      dl.l.upper = dl.l.lower = 0;      return (dl.d);    }  dl.l.upper = SIGN (fl1.l);  exp = EXP (fl1.l) - EXCESS + EXCESSD;  dl.l.upper |= exp << 20;  dl.l.upper |= (MANT (fl1.l) & ~HIDDEN) >> 3;  dl.l.lower = MANT (fl1.l) << 29;  return (dl.d);}/* convert double to float */float__truncdfsf2 (double a1){  register int exp;  register long mant;  register union float_long fl;  register union double_long dl1;  dl1.d = a1;  if (!dl1.l.upper && !dl1.l.lower)    return (0);  exp = EXPD (dl1) - EXCESSD + EXCESS;  /* shift double mantissa 6 bits so we can round */  mant = MANTD (dl1) >> 6;  /* now round and shift down */  mant += 1;  mant >>= 1;  /* did the round overflow? */  if (mant & 0xFF000000)    {      mant >>= 1;      exp++;    }  mant &= ~HIDDEN;  /* pack up and go home */  fl.l = PACK (SIGND (dl1), exp, mant);  return (fl.f);}/* compare two doubles */long__cmpdf2 (double a1, double a2){  register union double_long dl1, dl2;  dl1.d = a1;  dl2.d = a2;  if (SIGND (dl1) && SIGND (dl2))    {      dl1.l.upper ^= SIGNBIT;      dl2.l.upper ^= SIGNBIT;    }  if (dl1.l.upper < dl2.l.upper)    return (-1);  if (dl1.l.upper > dl2.l.upper)    return (1);  if (dl1.l.lower < dl2.l.lower)    return (-1);  if (dl1.l.lower > dl2.l.lower)    return (1);  return (0);}/* convert double to int */long__fixdfsi (double a1){  register union double_long dl1;  register int exp;  register long l;  dl1.d = a1;  if (!dl1.l.upper && !dl1.l.lower)    return (0);  exp = EXPD (dl1) - EXCESSD - 31;  l = MANTD (dl1);  if (exp > 0)    return (0x7FFFFFFF | SIGND (dl1)); /* largest integer */  /* shift down until exp = 0 or l = 0 */  if (exp < 0 && exp > -32 && l)    l >>= -exp;  else    return (0);  return (SIGND (dl1) ? -l : l);}/* convert double to unsigned int */unsignedlong __fixunsdfsi (double a1){  register union double_long dl1;  register int exp;  register unsigned long l;  dl1.d = a1;  if (!dl1.l.upper && !dl1.l.lower)    return (0);  exp = EXPD (dl1) - EXCESSD - 32;  l = (((((dl1.l.upper) & 0xFFFFF) | HIDDEND) << 11) | (dl1.l.lower >> 21));  if (exp > 0)    return (0xFFFFFFFF);	/* largest integer */  /* shift down until exp = 0 or l = 0 */  if (exp < 0 && exp > -32 && l)    l >>= -exp;  else    return (0);  return (l);}/* For now, the hard double-precision routines simply   punt and do it in single *//* addtwo doubles */double__adddf3 (double a1, double a2){  return ((float) a1 + (float) a2);}/* subtract two doubles */double__subdf3 (double a1, double a2){  return ((float) a1 - (float) a2);}/* multiply two doubles */double__muldf3 (double a1, double a2){  return ((float) a1 * (float) a2);}/* divide two doubles */double__divdf3 (double a1, double a2){  return ((float) a1 / (float) a2);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -