⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kiss.out

📁 diehard随机数测试套件的C程序代码
💻 OUT
📖 第 1 页 / 共 3 页
字号:
	r=6	77048       	77311.8     	0.900       	4.619       		chi-square = 4.619 with df = 2;  p-value = 0.099	--------------------------------------------------------------			      bits 17 to 24	RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM	r<=4	910         	944.3       	1.246       	1.246       	r=5	21817       	21743.9     	0.246       	1.492       	r=6	77273       	77311.8     	0.019       	1.511       		chi-square = 1.511 with df = 2;  p-value = 0.470	--------------------------------------------------------------			      bits 18 to 25	RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM	r<=4	964         	944.3       	0.411       	0.411       	r=5	21683       	21743.9     	0.171       	0.582       	r=6	77353       	77311.8     	0.022       	0.604       		chi-square = 0.604 with df = 2;  p-value = 0.740	--------------------------------------------------------------			      bits 19 to 26	RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM	r<=4	923         	944.3       	0.480       	0.480       	r=5	21521       	21743.9     	2.285       	2.765       	r=6	77556       	77311.8     	0.771       	3.537       		chi-square = 3.537 with df = 2;  p-value = 0.171	--------------------------------------------------------------			      bits 20 to 27	RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM	r<=4	960         	944.3       	0.261       	0.261       	r=5	21616       	21743.9     	0.752       	1.013       	r=6	77424       	77311.8     	0.163       	1.176       		chi-square = 1.176 with df = 2;  p-value = 0.555	--------------------------------------------------------------			      bits 21 to 28	RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM	r<=4	947         	944.3       	0.008       	0.008       	r=5	21665       	21743.9     	0.286       	0.294       	r=6	77388       	77311.8     	0.075       	0.369       		chi-square = 0.369 with df = 2;  p-value = 0.831	--------------------------------------------------------------			      bits 22 to 29	RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM	r<=4	921         	944.3       	0.575       	0.575       	r=5	21678       	21743.9     	0.200       	0.775       	r=6	77401       	77311.8     	0.103       	0.878       		chi-square = 0.878 with df = 2;  p-value = 0.645	--------------------------------------------------------------			      bits 23 to 30	RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM	r<=4	906         	944.3       	1.553       	1.553       	r=5	21807       	21743.9     	0.183       	1.737       	r=6	77287       	77311.8     	0.008       	1.744       		chi-square = 1.744 with df = 2;  p-value = 0.418	--------------------------------------------------------------			      bits 24 to 31	RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM	r<=4	875         	944.3       	5.086       	5.086       	r=5	21445       	21743.9     	4.109       	9.195       	r=6	77680       	77311.8     	1.754       	10.948      		chi-square = 10.948 with df = 2;  p-value = 0.004	--------------------------------------------------------------			      bits 25 to 32	RANK	OBSERVED	EXPECTED	(O-E)^2/E	SUM	r<=4	905         	944.3       	1.636       	1.636       	r=5	21645       	21743.9     	0.450       	2.085       	r=6	77450       	77311.8     	0.247       	2.332       		chi-square = 2.332 with df = 2;  p-value = 0.312	--------------------------------------------------------------	    TEST SUMMARY, 25 tests on 100,000 random 6x8 matrices	    These should be 25 uniform [0,1] random variates: 	0.101382    	0.014654    	0.387393    	0.081280    	0.455949     	0.736504    	0.564019    	0.657683    	0.488121    	0.956049     	0.976818    	0.111338    	0.228562    	0.618236    	0.551158     	0.099323    	0.469750    	0.739521    	0.170608    	0.555386     	0.831470    	0.644824    	0.418013    	0.004194    	0.311537    		The KS test for those 25 supposed UNI's yields			KS p-value = 0.489549	|-------------------------------------------------------------|	|                  THE BITSTREAM TEST                         |	|The file under test is viewed as a stream of bits. Call them |	|b1,b2,... .  Consider an alphabet with two "letters", 0 and 1|	|and think of the stream of bits as a succession of 20-letter |	|"words", overlapping.  Thus the first word is b1b2...b20, the|	|second is b2b3...b21, and so on.  The bitstream test counts  |	|the number of missing 20-letter (20-bit) words in a string of|	|2^21 overlapping 20-letter words.  There are 2^20 possible 20|	|letter words.  For a truly random string of 2^21+19 bits, the|	|number of missing words j should be (very close to) normally |	|distributed with mean 141,909 and sigma 428.  Thus           |	| (j-141909)/428 should be a standard normal variate (z score)|	|that leads to a uniform [0,1) p value.  The test is repeated |	|twenty times.                                                |	|-------------------------------------------------------------|		THE OVERLAPPING 20-TUPLES BITSTREAM  TEST for kiss.32	 (20 bits/word, 2097152 words 20 bitstreams. No. missing words 	  should average 141909.33 with sigma=428.00.)	----------------------------------------------------------------		   BITSTREAM test results for kiss.32.	Bitstream	No. missing words	z-score		p-value	   1		142021 			 0.26		0.397080	   2		141511 			-0.93		0.823990	   3		141928 			 0.04		0.482603	   4		142357 			 1.05		0.147790	   5		141199 			-1.66		0.951508	   6		141894 			-0.04		0.514286	   7		142279 			 0.86		0.193872	   8		141488 			-0.98		0.837544	   9		141864 			-0.11		0.542174	   10		141879 			-0.07		0.528247	   11		142351 			 1.03		0.151050	   12		141600 			-0.72		0.765078	   13		142388 			 1.12		0.131701	   14		142755 			 1.98		0.024085	   15		141585 			-0.76		0.775709	   16		142181 			 0.63		0.262798	   17		141703 			-0.48		0.685125	   18		141505 			-0.94		0.827593	   19		141867 			-0.10		0.539392	   20		141233 			-1.58		0.942971	----------------------------------------------------------------	|-------------------------------------------------------------|	|        OPSO means Overlapping-Pairs-Sparse-Occupancy        |	|The OPSO test considers 2-letter words from an alphabet of   |	|1024 letters.  Each letter is determined by a specified ten  |	|bits from a 32-bit integer in the sequence to be tested. OPSO|	|generates  2^21 (overlapping) 2-letter words  (from 2^21+1   |	|"keystrokes")  and counts the number of missing words---that |	|is 2-letter words which do not appear in the entire sequence.|	|That count should be very close to normally distributed with |	|mean 141,909, sigma 290. Thus (missingwrds-141909)/290 should|	|be a standard normal variable. The OPSO test takes 32 bits at|	|a time from the test file and uses a designated set of ten   |	|consecutive bits. It then restarts the file for the next de- |	|signated 10 bits, and so on.                                 |	|------------------------------------------------------------ |			   OPSO test for file kiss.32	Bits used	No. missing words	z-score		p-value	23 to 32  		142347 		 1.5092		0.065623	22 to 31  		142167 		 0.8885		0.187131	21 to 30  		142216 		 1.0575		0.145146	20 to 29  		141554 		-1.2253		0.889764	19 to 28  		141714 		-0.6736		0.749702	18 to 27  		141849 		-0.2080		0.582399	17 to 26  		141945 		 0.1230		0.451053	16 to 25  		141561 		-1.2011		0.885151	15 to 24  		141540 		-1.2736		0.898589	14 to 23  		142495 		 2.0196		0.021715	13 to 22  		142211 		 1.0402		0.149114	12 to 21  		141891 		-0.0632		0.525199	11 to 20  		142050 		 0.4851		0.313814	10 to 19  		142234 		 1.1196		0.131452	9 to 18  		142198 		 0.9954		0.159767	8 to 17  		142386 		 1.6437		0.050120	7 to 16  		141407 		-1.7322		0.958379	6 to 15  		141815 		-0.3253		0.627514	5 to 14  		141349 		-1.9322		0.973331	4 to 13  		142062 		 0.5264		0.299288	3 to 12  		141779 		-0.4494		0.673433	2 to 11  		142258 		 1.2023		0.114622	1 to 10  		141886 		-0.0804		0.532060	-----------------------------------------------------------------	|------------------------------------------------------------ |	|    OQSO means Overlapping-Quadruples-Sparse-Occupancy       |	|  The test OQSO is similar, except that it considers 4-letter|	|words from an alphabet of 32 letters, each letter determined |	|by a designated string of 5 consecutive bits from the test   |	|file, elements of which are assumed 32-bit random integers.  |	|The mean number of missing words in a sequence of 2^21 four- |	|letter words,  (2^21+3 "keystrokes"), is again 141909, with  |	|sigma = 295.  The mean is based on theory; sigma comes from  |	|extensive simulation.                                        |	|------------------------------------------------------------ |			   OQSO test for file kiss.32	Bits used	No. missing words	z-score		p-value	28 to 32  		142130 		 0.7480		0.227220	27 to 31  		141728 		-0.6147		0.730616	26 to 30  		142201 		 0.9887		0.161402	25 to 29  		141944 		 0.1175		0.453222	24 to 28  		142036 		 0.4294		0.333820	23 to 27  		142191 		 0.9548		0.169836	22 to 26  		142269 		 1.2192		0.111380	21 to 25  		142139 		 0.7785		0.218125	20 to 24  		141985 		 0.2565		0.398779	19 to 23  		141656 		-0.8587		0.804760	18 to 22  		142345 		 1.4768		0.069858	17 to 21  		141705 		-0.6926		0.755733	16 to 20  		142035 		 0.4260		0.335054	15 to 19  		141747 		-0.5503		0.708933	14 to 18  		141801 		-0.3672		0.643273	13 to 17  		142143 		 0.7921		0.214151	12 to 16  		141632 		-0.9401		0.826417	11 to 15  		142222 		 1.0599		0.144595	10 to 14  		141931 		 0.0735		0.470721	9 to 13  		141655 		-0.8621		0.805694	8 to 12  		142335 		 1.4429		0.074517	7 to 11  		142287 		 1.2802		0.100231	6 to 10  		141418 		-1.6655		0.952096	5 to 9  		141776 		-0.4520		0.674353	4 to 8  		142705 		 2.6972		0.003496	3 to 7  		142123 		 0.7243		0.234439	2 to 6  		141943 		 0.1141		0.454565	1 to 5  		141793 		-0.3943		0.653335	-----------------------------------------------------------------	|------------------------------------------------------------ |	|    The DNA test considers an alphabet of 4 letters: C,G,A,T,|	|determined by two designated bits in the sequence of random  |	|integers being tested.  It considers 10-letter words, so that|	|as in OPSO and OQSO, there are 2^20 possible words, and the  |	|mean number of missing words from a string of 2^21  (over-   |	|lapping)  10-letter  words (2^21+9 "keystrokes") is 141909.  |	|The standard deviation sigma=339 was determined as for OQSO  |	|by simulation.  (Sigma for OPSO, 290, is the true value (to  |	|three places), not determined by simulation.                 |	|------------------------------------------------------------ |			   DNA test for file kiss.32	Bits used	No. missing words	z-score		p-value	31 to 32  		141360 		-1.6204		0.947431	30 to 31  		141725 		-0.5437		0.706692	29 to 30  		142363 		 1.3383		0.090406	28 to 29  		142059 		 0.4415		0.329424	27 to 28  		141591 		-0.9390		0.826141	26 to 27  		141979 		 0.2055		0.418584	25 to 26  		141941 		 0.0934		0.462784	24 to 25  		142561 		 1.9223		0.027282	23 to 24  		142089 		 0.5300		0.298056	22 to 23  		141811 		-0.2901		0.614114	21 to 22  		141635 		-0.8092		0.790809	20 to 21  		141844 		-0.1927		0.576408	19 to 20  		141838 		-0.2104		0.583327	18 to 19  		142043 		 0.3943		0.346677	17 to 18  		141965 		 0.1642		0.434780	16 to 17  		142265 		 1.0492		0.147049	15 to 16  		142192 		 0.8338		0.202187	14 to 15  		141683 		-0.6676		0.747818	13 to 14  		142092 		 0.5388		0.294995	12 to 13  		142582 		 1.9843		0.023612	11 to 12  		142434 		 1.5477		0.060847	10 to 11  		141887 		-0.0659		0.526259	9 to 10  		141593 		-0.9331		0.824623	8 to 9  		141763 		-0.4317		0.667003	7 to 8  		141691 		-0.6440		0.740226	6 to 7  		141992 		 0.2439		0.403668	5 to 6  		142153 		 0.7188		0.236135	4 to 5  		141575 		-0.9862		0.837988	3 to 4  		142069 		 0.4710		0.318819	2 to 3  		142127 		 0.6421		0.260406	1 to 2  		142371 		 1.3619		0.086621	-----------------------------------------------------------------	|-------------------------------------------------------------|	|    This is the COUNT-THE-1''s TEST on a stream of bytes.    |	|Consider the file under test as a stream of bytes (four per  |	|32 bit integer).  Each byte can contain from 0 to 8 1''s,    |	|with probabilities 1,8,28,56,70,56,28,8,1 over 256.  Now let |	|the stream of bytes provide a string of overlapping  5-letter|	|words, each "letter" taking values A,B,C,D,E. The letters are|	|determined by the number of 1''s in a byte: 0,1,or 2 yield A,|	|3 yields B, 4 yields C, 5 yields D and 6,7 or 8 yield E. Thus|	|we have a monkey at a typewriter hitting five keys with vari-|	|ous probabilities (37,56,70,56,37 over 256).  There are 5^5  |	|possible 5-letter words, and from a string of 256,000 (over- |	|lapping) 5-letter words, counts are made on the frequencies  |	|for each word.   The quadratic form in the weak inverse of   |	|the covariance matrix of the cell counts provides a chisquare|	|test: Q5-Q4, the difference of the naive Pearson sums of     |

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -