📄 kiss.out
字号:
NOTE Most of the tests in DIEHARD return a p-value, which should be uniform on [0,1) if the input file contains truly independent random bits. Those p-values are obtained by p=1-F(X), where F is the assumed distribution of the sample random variable X---often normal. But that assumed F is often just an asymptotic approximation, for which the fit will be worst in the tails. Thus you should not be surprised with occasion- al p-values near 0 or 1, such as .0012 or .9983. When a bit stream really FAILS BIG, you will get p`s of 0 or 1 to six or more places. By all means, do not, as a Statistician might, think that a p < .025 or p> .975 means that the RNG has "failed the test at the .05 level". Such p`s happen among the hundreds that DIEHARD produces, even with good RNGs. So keep in mind that "p happens" Enter the name of the file to be tested. This must be a form="unformatted",access="direct" binary file of about 10-12 million bytes. Enter file name: HERE ARE YOUR CHOICES: 1 Birthday Spacings 2 Overlapping Permutations 3 Ranks of 31x31 and 32x32 matrices 4 Ranks of 6x8 Matrices 5 Monkey Tests on 20-bit Words 6 Monkey Tests OPSO,OQSO,DNA 7 Count the 1`s in a Stream of Bytes 8 Count the 1`s in Specific Bytes 9 Parking Lot Test 10 Minimum Distance Test 11 Random Spheres Test 12 The Sqeeze Test 13 Overlapping Sums Test 14 Runs Test 15 The Craps Test 16 All of the above To choose any particular tests, enter corresponding numbers. Enter 16 for all tests. If you want to perform all but a few tests, enter corresponding numbers preceded by "-" sign. Tests are executed in the order they are entered. Enter your choices. |-------------------------------------------------------------| | This is the BIRTHDAY SPACINGS TEST | |Choose m birthdays in a "year" of n days. List the spacings | |between the birthdays. Let j be the number of values that | |occur more than once in that list, then j is asymptotically | |Poisson distributed with mean m^3/(4n). Experience shows n | |must be quite large, say n>=2^18, for comparing the results | |to the Poisson distribution with that mean. This test uses | |n=2^24 and m=2^10, so that the underlying distribution for j | |is taken to be Poisson with lambda=2^30/(2^26)=16. A sample | |of 200 j''s is taken, and a chi-square goodness of fit test | |provides a p value. The first test uses bits 1-24 (counting | |from the left) from integers in the specified file. Then the| |file is closed and reopened, then bits 2-25 of the same inte-| |gers are used to provide birthdays, and so on to bits 9-32. | |Each set of bits provides a p-value, and the nine p-values | |provide a sample for a KSTEST. | |------------------------------------------------------------ | RESULTS OF BIRTHDAY SPACINGS TEST FOR kiss.32 (no_bdays=1024, no_days/yr=2^24, lambda=16.00, sample size=500) Bits used mean chisqr p-value 1 to 24 15.59 29.9601 0.026634 2 to 25 15.79 17.3824 0.428760 3 to 26 15.72 20.1714 0.265557 4 to 27 15.58 14.1076 0.659469 5 to 28 15.86 21.2774 0.214128 6 to 29 15.74 18.5951 0.352263 7 to 30 15.65 18.1323 0.380544 8 to 31 15.46 29.2788 0.032041 9 to 32 15.45 16.3663 0.498032 degree of freedoms is: 17 --------------------------------------------------------------- p-value for KStest on those 9 p-values: 0.077945 |-------------------------------------------------------------| |This is the BINARY RANK TEST for 31x31 matrices. The leftmost| |31 bits of 31 random integers from the test sequence are used| |to form a 31x31 binary matrix over the field {0,1}. The rank | |is determined. That rank can be from 0 to 31, but ranks< 28 | |are rare, and their counts are pooled with those for rank 28.| |Ranks are found for 40,000 such random matrices and a chisqu-| |are test is performed on counts for ranks 31,30,28 and <=28. | |-------------------------------------------------------------| Rank test for binary matrices (31x31) from kiss.32 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=28 233 211.4 2.203 2.203 r=29 5108 5134.0 0.132 2.335 r=30 23234 23103.0 0.742 3.077 r=31 11425 11551.5 1.386 4.463 chi-square = 4.463 with df = 3; p-value = 0.216 -------------------------------------------------------------- |-------------------------------------------------------------| |This is the BINARY RANK TEST for 32x32 matrices. A random 32x| |32 binary matrix is formed, each row a 32-bit random integer.| |The rank is determined. That rank can be from 0 to 32, ranks | |less than 29 are rare, and their counts are pooled with those| |for rank 29. Ranks are found for 40,000 such random matrices| |and a chisquare test is performed on counts for ranks 32,31,| |30 and <=29. | |-------------------------------------------------------------| Rank test for binary matrices (32x32) from kiss.32 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=29 191 211.4 1.972 1.972 r=30 5062 5134.0 1.010 2.982 r=31 23092 23103.0 0.005 2.987 r=32 11655 11551.5 0.927 3.914 chi-square = 3.914 with df = 3; p-value = 0.271 -------------------------------------------------------------- |-------------------------------------------------------------| |This is the BINARY RANK TEST for 6x8 matrices. From each of | |six random 32-bit integers from the generator under test, a | |specified byte is chosen, and the resulting six bytes form a | |6x8 binary matrix whose rank is determined. That rank can be| |from 0 to 6, but ranks 0,1,2,3 are rare; their counts are | |pooled with those for rank 4. Ranks are found for 100,000 | |random matrices, and a chi-square test is performed on | |counts for ranks 6,5 and (0,...,4) (pooled together). | |-------------------------------------------------------------| Rank test for binary matrices (6x8) from kiss.32 bits 1 to 8 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 1009 944.3 4.433 4.433 r=5 21688 21743.9 0.144 4.577 r=6 77303 77311.8 0.001 4.578 chi-square = 4.578 with df = 2; p-value = 0.101 -------------------------------------------------------------- bits 2 to 9 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 1027 944.3 7.243 7.243 r=5 21587 21743.9 1.132 8.375 r=6 77386 77311.8 0.071 8.446 chi-square = 8.446 with df = 2; p-value = 0.015 -------------------------------------------------------------- bits 3 to 10 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 964 944.3 0.411 0.411 r=5 21581 21743.9 1.220 1.631 r=6 77455 77311.8 0.265 1.897 chi-square = 1.897 with df = 2; p-value = 0.387 -------------------------------------------------------------- bits 4 to 11 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 936 944.3 0.073 0.073 r=5 21456 21743.9 3.812 3.885 r=6 77608 77311.8 1.135 5.020 chi-square = 5.020 with df = 2; p-value = 0.081 -------------------------------------------------------------- bits 5 to 12 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 922 944.3 0.527 0.527 r=5 21616 21743.9 0.752 1.279 r=6 77462 77311.8 0.292 1.571 chi-square = 1.571 with df = 2; p-value = 0.456 -------------------------------------------------------------- bits 6 to 13 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 966 944.3 0.499 0.499 r=5 21782 21743.9 0.067 0.565 r=6 77252 77311.8 0.046 0.612 chi-square = 0.612 with df = 2; p-value = 0.737 -------------------------------------------------------------- bits 7 to 14 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 919 944.3 0.678 0.678 r=5 21661 21743.9 0.316 0.994 r=6 77420 77311.8 0.151 1.145 chi-square = 1.145 with df = 2; p-value = 0.564 -------------------------------------------------------------- bits 8 to 15 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 940 944.3 0.020 0.020 r=5 21627 21743.9 0.628 0.648 r=6 77433 77311.8 0.190 0.838 chi-square = 0.838 with df = 2; p-value = 0.658 -------------------------------------------------------------- bits 9 to 16 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 909 944.3 1.320 1.320 r=5 21710 21743.9 0.053 1.372 r=6 77381 77311.8 0.062 1.434 chi-square = 1.434 with df = 2; p-value = 0.488 -------------------------------------------------------------- bits 10 to 17 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 952 944.3 0.063 0.063 r=5 21721 21743.9 0.024 0.087 r=6 77327 77311.8 0.003 0.090 chi-square = 0.090 with df = 2; p-value = 0.956 -------------------------------------------------------------- bits 11 to 18 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 938 944.3 0.042 0.042 r=5 21754 21743.9 0.005 0.047 r=6 77308 77311.8 0.000 0.047 chi-square = 0.047 with df = 2; p-value = 0.977 -------------------------------------------------------------- bits 12 to 19 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 910 944.3 1.246 1.246 r=5 21982 21743.9 2.607 3.853 r=6 77108 77311.8 0.537 4.390 chi-square = 4.390 with df = 2; p-value = 0.111 -------------------------------------------------------------- bits 13 to 20 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 900 944.3 2.078 2.078 r=5 21874 21743.9 0.778 2.857 r=6 77226 77311.8 0.095 2.952 chi-square = 2.952 with df = 2; p-value = 0.229 -------------------------------------------------------------- bits 14 to 21 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 969 944.3 0.646 0.646 r=5 21666 21743.9 0.279 0.925 r=6 77365 77311.8 0.037 0.962 chi-square = 0.962 with df = 2; p-value = 0.618 -------------------------------------------------------------- bits 15 to 22 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 963 944.3 0.370 0.370 r=5 21622 21743.9 0.683 1.054 r=6 77415 77311.8 0.138 1.191 chi-square = 1.191 with df = 2; p-value = 0.551 -------------------------------------------------------------- bits 16 to 23 RANK OBSERVED EXPECTED (O-E)^2/E SUM r<=4 931 944.3 0.187 0.187 r=5 22021 21743.9 3.531 3.719
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -