📄 btree.c
字号:
goto page1_init_failed; } assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); pBt->pPage1 = pPage1; return SQLITE_OK;page1_init_failed: releasePage(pPage1); pBt->pPage1 = 0; return rc;}/*** This routine works like lockBtree() except that it also invokes the** busy callback if there is lock contention.*/static int lockBtreeWithRetry(Btree *pRef){ int rc = SQLITE_OK; assert( sqlite3BtreeHoldsMutex(pRef) ); if( pRef->inTrans==TRANS_NONE ){ u8 inTransaction = pRef->pBt->inTransaction; btreeIntegrity(pRef); rc = sqlite3BtreeBeginTrans(pRef, 0); pRef->pBt->inTransaction = inTransaction; pRef->inTrans = TRANS_NONE; if( rc==SQLITE_OK ){ pRef->pBt->nTransaction--; } btreeIntegrity(pRef); } return rc;} /*** If there are no outstanding cursors and we are not in the middle** of a transaction but there is a read lock on the database, then** this routine unrefs the first page of the database file which ** has the effect of releasing the read lock.**** If there are any outstanding cursors, this routine is a no-op.**** If there is a transaction in progress, this routine is a no-op.*/static void unlockBtreeIfUnused(BtShared *pBt){ assert( sqlite3_mutex_held(pBt->mutex) ); if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){ if( sqlite3PagerRefcount(pBt->pPager)>=1 ){ assert( pBt->pPage1->aData );#if 0 if( pBt->pPage1->aData==0 ){ MemPage *pPage = pBt->pPage1; pPage->aData = sqlite3PagerGetData(pPage->pDbPage); pPage->pBt = pBt; pPage->pgno = 1; }#endif releasePage(pBt->pPage1); } pBt->pPage1 = 0; pBt->inStmt = 0; }}/*** Create a new database by initializing the first page of the** file.*/static int newDatabase(BtShared *pBt){ MemPage *pP1; unsigned char *data; int rc; assert( sqlite3_mutex_held(pBt->mutex) ); if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK; pP1 = pBt->pPage1; assert( pP1!=0 ); data = pP1->aData; rc = sqlite3PagerWrite(pP1->pDbPage); if( rc ) return rc; memcpy(data, zMagicHeader, sizeof(zMagicHeader)); assert( sizeof(zMagicHeader)==16 ); put2byte(&data[16], pBt->pageSize); data[18] = 1; data[19] = 1; data[20] = pBt->pageSize - pBt->usableSize; data[21] = pBt->maxEmbedFrac; data[22] = pBt->minEmbedFrac; data[23] = pBt->minLeafFrac; memset(&data[24], 0, 100-24); zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); pBt->pageSizeFixed = 1;#ifndef SQLITE_OMIT_AUTOVACUUM assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); put4byte(&data[36 + 4*4], pBt->autoVacuum); put4byte(&data[36 + 7*4], pBt->incrVacuum);#endif return SQLITE_OK;}/*** Attempt to start a new transaction. A write-transaction** is started if the second argument is nonzero, otherwise a read-** transaction. If the second argument is 2 or more and exclusive** transaction is started, meaning that no other process is allowed** to access the database. A preexisting transaction may not be** upgraded to exclusive by calling this routine a second time - the** exclusivity flag only works for a new transaction.**** A write-transaction must be started before attempting any ** changes to the database. None of the following routines ** will work unless a transaction is started first:**** sqlite3BtreeCreateTable()** sqlite3BtreeCreateIndex()** sqlite3BtreeClearTable()** sqlite3BtreeDropTable()** sqlite3BtreeInsert()** sqlite3BtreeDelete()** sqlite3BtreeUpdateMeta()**** If an initial attempt to acquire the lock fails because of lock contention** and the database was previously unlocked, then invoke the busy handler** if there is one. But if there was previously a read-lock, do not** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is ** returned when there is already a read-lock in order to avoid a deadlock.**** Suppose there are two processes A and B. A has a read lock and B has** a reserved lock. B tries to promote to exclusive but is blocked because** of A's read lock. A tries to promote to reserved but is blocked by B.** One or the other of the two processes must give way or there can be** no progress. By returning SQLITE_BUSY and not invoking the busy callback** when A already has a read lock, we encourage A to give up and let B** proceed.*/int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ BtShared *pBt = p->pBt; int rc = SQLITE_OK; sqlite3BtreeEnter(p); pBt->db = p->db; btreeIntegrity(p); /* If the btree is already in a write-transaction, or it ** is already in a read-transaction and a read-transaction ** is requested, this is a no-op. */ if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ goto trans_begun; } /* Write transactions are not possible on a read-only database */ if( pBt->readOnly && wrflag ){ rc = SQLITE_READONLY; goto trans_begun; } /* If another database handle has already opened a write transaction ** on this shared-btree structure and a second write transaction is ** requested, return SQLITE_BUSY. */ if( pBt->inTransaction==TRANS_WRITE && wrflag ){ rc = SQLITE_BUSY; goto trans_begun; }#ifndef SQLITE_OMIT_SHARED_CACHE if( wrflag>1 ){ BtLock *pIter; for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ if( pIter->pBtree!=p ){ rc = SQLITE_BUSY; goto trans_begun; } } }#endif do { if( pBt->pPage1==0 ){ rc = lockBtree(pBt); } if( rc==SQLITE_OK && wrflag ){ if( pBt->readOnly ){ rc = SQLITE_READONLY; }else{ rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1); if( rc==SQLITE_OK ){ rc = newDatabase(pBt); } } } if( rc==SQLITE_OK ){ if( wrflag ) pBt->inStmt = 0; }else{ unlockBtreeIfUnused(pBt); } }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && sqlite3BtreeInvokeBusyHandler(pBt, 0) ); if( rc==SQLITE_OK ){ if( p->inTrans==TRANS_NONE ){ pBt->nTransaction++; } p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); if( p->inTrans>pBt->inTransaction ){ pBt->inTransaction = p->inTrans; }#ifndef SQLITE_OMIT_SHARED_CACHE if( wrflag>1 ){ assert( !pBt->pExclusive ); pBt->pExclusive = p; }#endif }trans_begun: btreeIntegrity(p); sqlite3BtreeLeave(p); return rc;}#ifndef SQLITE_OMIT_AUTOVACUUM/*** Set the pointer-map entries for all children of page pPage. Also, if** pPage contains cells that point to overflow pages, set the pointer** map entries for the overflow pages as well.*/static int setChildPtrmaps(MemPage *pPage){ int i; /* Counter variable */ int nCell; /* Number of cells in page pPage */ int rc; /* Return code */ BtShared *pBt = pPage->pBt; int isInitOrig = pPage->isInit; Pgno pgno = pPage->pgno; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); rc = sqlite3BtreeInitPage(pPage, pPage->pParent); if( rc!=SQLITE_OK ){ goto set_child_ptrmaps_out; } nCell = pPage->nCell; for(i=0; i<nCell; i++){ u8 *pCell = findCell(pPage, i); rc = ptrmapPutOvflPtr(pPage, pCell); if( rc!=SQLITE_OK ){ goto set_child_ptrmaps_out; } if( !pPage->leaf ){ Pgno childPgno = get4byte(pCell); rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out; } } if( !pPage->leaf ){ Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); }set_child_ptrmaps_out: pPage->isInit = isInitOrig; return rc;}/*** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow** page, is a pointer to page iFrom. Modify this pointer so that it points to** iTo. Parameter eType describes the type of pointer to be modified, as ** follows:**** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child ** page of pPage.**** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow** page pointed to by one of the cells on pPage.**** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next** overflow page in the list.*/static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); if( eType==PTRMAP_OVERFLOW2 ){ /* The pointer is always the first 4 bytes of the page in this case. */ if( get4byte(pPage->aData)!=iFrom ){ return SQLITE_CORRUPT_BKPT; } put4byte(pPage->aData, iTo); }else{ int isInitOrig = pPage->isInit; int i; int nCell; sqlite3BtreeInitPage(pPage, 0); nCell = pPage->nCell; for(i=0; i<nCell; i++){ u8 *pCell = findCell(pPage, i); if( eType==PTRMAP_OVERFLOW1 ){ CellInfo info; sqlite3BtreeParseCellPtr(pPage, pCell, &info); if( info.iOverflow ){ if( iFrom==get4byte(&pCell[info.iOverflow]) ){ put4byte(&pCell[info.iOverflow], iTo); break; } } }else{ if( get4byte(pCell)==iFrom ){ put4byte(pCell, iTo); break; } } } if( i==nCell ){ if( eType!=PTRMAP_BTREE || get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ return SQLITE_CORRUPT_BKPT; } put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); } pPage->isInit = isInitOrig; } return SQLITE_OK;}/*** Move the open database page pDbPage to location iFreePage in the ** database. The pDbPage reference remains valid.*/static int relocatePage( BtShared *pBt, /* Btree */ MemPage *pDbPage, /* Open page to move */ u8 eType, /* Pointer map 'type' entry for pDbPage */ Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ Pgno iFreePage /* The location to move pDbPage to */){ MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ Pgno iDbPage = pDbPage->pgno; Pager *pPager = pBt->pPager; int rc; assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); assert( sqlite3_mutex_held(pBt->mutex) ); assert( pDbPage->pBt==pBt ); /* Move page iDbPage from its current location to page number iFreePage */ TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", iDbPage, iFreePage, iPtrPage, eType)); rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage); if( rc!=SQLITE_OK ){ return rc; } pDbPage->pgno = iFreePage; /* If pDbPage was a btree-page, then it may have child pages and/or cells ** that point to overflow pages. The pointer map entries for all these ** pages need to be changed. ** ** If pDbPage is an overflow page, then the first 4 bytes may store a ** pointer to a subsequent overflow page. If this is the case, then ** the pointer map needs to be updated for the subsequent overflow page. */ if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ rc = setChildPtrmaps(pDbPage); if( rc!=SQLITE_OK ){ return rc; } }else{ Pgno nextOvfl = get4byte(pDbPage->aData); if( nextOvfl!=0 ){ rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage); if( rc!=SQLITE_OK ){ return rc; } } } /* Fix the database pointer on page iPtrPage that pointed at iDbPage so ** that it points at iFreePage. Also fix the pointer map entry for ** iPtrPage. */ if( eType!=PTRMAP_ROOTPAGE ){ rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0); if( rc!=SQLITE_OK ){ return rc; } rc = sqlite3PagerWrite(pPtrPage->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pPtrPage); return rc; } rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); releasePage(pPtrPage); if( rc==SQLITE_OK ){ rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage); } } return rc;}/* Forward declaration required by incrVacuumStep(). */static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);/*** Perform a single step of an incremental-vacuum. If successful,** return SQLITE_OK. If there is no work to do (and therefore no** poi
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -