📄 func.c
字号:
/*** An instance of the following structure holds the context of a** sum() or avg() aggregate computation.*/typedef struct SumCtx SumCtx;struct SumCtx { double rSum; /* Floating point sum */ i64 iSum; /* Integer sum */ i64 cnt; /* Number of elements summed */ u8 overflow; /* True if integer overflow seen */ u8 approx; /* True if non-integer value was input to the sum */};/*** Routines used to compute the sum, average, and total.**** The SUM() function follows the (broken) SQL standard which means** that it returns NULL if it sums over no inputs. TOTAL returns** 0.0 in that case. In addition, TOTAL always returns a float where** SUM might return an integer if it never encounters a floating point** value. TOTAL never fails, but SUM might through an exception if** it overflows an integer.*/static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ SumCtx *p; int type; assert( argc==1 ); p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_numeric_type(argv[0]); if( p && type!=SQLITE_NULL ){ p->cnt++; if( type==SQLITE_INTEGER ){ i64 v = sqlite3_value_int64(argv[0]); p->rSum += v; if( (p->approx|p->overflow)==0 ){ i64 iNewSum = p->iSum + v; int s1 = p->iSum >> (sizeof(i64)*8-1); int s2 = v >> (sizeof(i64)*8-1); int s3 = iNewSum >> (sizeof(i64)*8-1); p->overflow = (s1&s2&~s3) | (~s1&~s2&s3); p->iSum = iNewSum; } }else{ p->rSum += sqlite3_value_double(argv[0]); p->approx = 1; } }}static void sumFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ if( p->overflow ){ sqlite3_result_error(context,"integer overflow",-1); }else if( p->approx ){ sqlite3_result_double(context, p->rSum); }else{ sqlite3_result_int64(context, p->iSum); } }}static void avgFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ sqlite3_result_double(context, p->rSum/(double)p->cnt); }}static void totalFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); sqlite3_result_double(context, p ? p->rSum : 0.0);}/*** The following structure keeps track of state information for the** count() aggregate function.*/typedef struct CountCtx CountCtx;struct CountCtx { i64 n;};/*** Routines to implement the count() aggregate function.*/static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ CountCtx *p; p = sqlite3_aggregate_context(context, sizeof(*p)); if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ p->n++; }} static void countFinalize(sqlite3_context *context){ CountCtx *p; p = sqlite3_aggregate_context(context, 0); sqlite3_result_int64(context, p ? p->n : 0);}/*** Routines to implement min() and max() aggregate functions.*/static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){ Mem *pArg = (Mem *)argv[0]; Mem *pBest; if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); if( !pBest ) return; if( pBest->flags ){ int max; int cmp; CollSeq *pColl = sqlite3GetFuncCollSeq(context); /* This step function is used for both the min() and max() aggregates, ** the only difference between the two being that the sense of the ** comparison is inverted. For the max() aggregate, the ** sqlite3_user_data() function returns (void *)-1. For min() it ** returns (void *)db, where db is the sqlite3* database pointer. ** Therefore the next statement sets variable 'max' to 1 for the max() ** aggregate, or 0 for min(). */ max = sqlite3_user_data(context)!=0; cmp = sqlite3MemCompare(pBest, pArg, pColl); if( (max && cmp<0) || (!max && cmp>0) ){ sqlite3VdbeMemCopy(pBest, pArg); } }else{ sqlite3VdbeMemCopy(pBest, pArg); }}static void minMaxFinalize(sqlite3_context *context){ sqlite3_value *pRes; pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); if( pRes ){ if( pRes->flags ){ sqlite3_result_value(context, pRes); } sqlite3VdbeMemRelease(pRes); }}/*** group_concat(EXPR, ?SEPARATOR?)*/static void groupConcatStep( sqlite3_context *context, int argc, sqlite3_value **argv){ const char *zVal; StrAccum *pAccum; const char *zSep; int nVal, nSep; if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); if( pAccum ){ pAccum->useMalloc = 1; if( pAccum->nChar ){ if( argc==2 ){ zSep = (char*)sqlite3_value_text(argv[1]); nSep = sqlite3_value_bytes(argv[1]); }else{ zSep = ","; nSep = 1; } sqlite3StrAccumAppend(pAccum, zSep, nSep); } zVal = (char*)sqlite3_value_text(argv[0]); nVal = sqlite3_value_bytes(argv[0]); sqlite3StrAccumAppend(pAccum, zVal, nVal); }}static void groupConcatFinalize(sqlite3_context *context){ StrAccum *pAccum; pAccum = sqlite3_aggregate_context(context, 0); if( pAccum ){ if( pAccum->tooBig ){ sqlite3_result_error_toobig(context); }else if( pAccum->mallocFailed ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, sqlite3_free); } }}/*** This function registered all of the above C functions as SQL** functions. This should be the only routine in this file with** external linkage.*/void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ static const struct { char *zName; signed char nArg; u8 argType; /* ff: db 1: 0, 2: 1, 3: 2,... N: N-1. */ u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */ u8 needCollSeq; void (*xFunc)(sqlite3_context*,int,sqlite3_value **); } aFuncs[] = { { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc }, { "min", 0, 0, SQLITE_UTF8, 1, 0 }, { "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc }, { "max", 0, 1, SQLITE_UTF8, 1, 0 }, { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc }, { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc }, { "substr", 2, 0, SQLITE_UTF8, 0, substrFunc }, { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc }, { "abs", 1, 0, SQLITE_UTF8, 0, absFunc }, { "round", 1, 0, SQLITE_UTF8, 0, roundFunc }, { "round", 2, 0, SQLITE_UTF8, 0, roundFunc }, { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc }, { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc }, { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc }, { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 }, { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 }, { "hex", 1, 0, SQLITE_UTF8, 0, hexFunc }, { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc }, { "random", -1, 0, SQLITE_UTF8, 0, randomFunc }, { "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob }, { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc }, { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc}, { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc }, { "last_insert_rowid", 0, 0xff, SQLITE_UTF8, 0, last_insert_rowid }, { "changes", 0, 0xff, SQLITE_UTF8, 0, changes }, { "total_changes", 0, 0xff, SQLITE_UTF8, 0, total_changes }, { "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc }, { "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc }, { "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc }, { "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc }, { "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc }, { "trim", 1, 3, SQLITE_UTF8, 0, trimFunc }, { "trim", 2, 3, SQLITE_UTF8, 0, trimFunc }, { "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc },#ifdef SQLITE_SOUNDEX { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},#endif#ifndef SQLITE_OMIT_LOAD_EXTENSION { "load_extension", 1, 0xff, SQLITE_UTF8, 0, loadExt }, { "load_extension", 2, 0xff, SQLITE_UTF8, 0, loadExt },#endif#ifdef SQLITE_TEST { "randstr", 2, 0, SQLITE_UTF8, 0, randStr }, { "test_destructor", 1, 0xff, SQLITE_UTF8, 0, test_destructor}, { "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count}, { "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata}, { "test_error", 1, 0, SQLITE_UTF8, 0, test_error},#endif }; static const struct { char *zName; signed char nArg; u8 argType; u8 needCollSeq; void (*xStep)(sqlite3_context*,int,sqlite3_value**); void (*xFinalize)(sqlite3_context*); } aAggs[] = { { "min", 1, 0, 1, minmaxStep, minMaxFinalize }, { "max", 1, 1, 1, minmaxStep, minMaxFinalize }, { "sum", 1, 0, 0, sumStep, sumFinalize }, { "total", 1, 0, 0, sumStep, totalFinalize }, { "avg", 1, 0, 0, sumStep, avgFinalize }, { "count", 0, 0, 0, countStep, countFinalize }, { "count", 1, 0, 0, countStep, countFinalize }, { "group_concat", 1, 0, 0, groupConcatStep, groupConcatFinalize }, { "group_concat", 2, 0, 0, groupConcatStep, groupConcatFinalize }, }; int i; for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ void *pArg; u8 argType = aFuncs[i].argType; if( argType==0xff ){ pArg = db; }else{ pArg = (void*)(int)argType; } sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg, aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0); if( aFuncs[i].needCollSeq ){ FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName, strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0); if( pFunc && aFuncs[i].needCollSeq ){ pFunc->needCollSeq = 1; } } }#ifndef SQLITE_OMIT_ALTERTABLE sqlite3AlterFunctions(db);#endif#ifndef SQLITE_OMIT_PARSER sqlite3AttachFunctions(db);#endif for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){ void *pArg = (void*)(int)aAggs[i].argType; sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8, pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize); if( aAggs[i].needCollSeq ){ FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName, strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0); if( pFunc && aAggs[i].needCollSeq ){ pFunc->needCollSeq = 1; } } } sqlite3RegisterDateTimeFunctions(db); if( !db->mallocFailed ){ int rc = sqlite3_overload_function(db, "MATCH", 2); assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); if( rc==SQLITE_NOMEM ){ db->mallocFailed = 1; } }#ifdef SQLITE_SSE (void)sqlite3SseFunctions(db);#endif#ifdef SQLITE_CASE_SENSITIVE_LIKE sqlite3RegisterLikeFunctions(db, 1);#else sqlite3RegisterLikeFunctions(db, 0);#endif}/*** Set the LIKEOPT flag on the 2-argument function with the given name.*/static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){ FuncDef *pDef; pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0); if( pDef ){ pDef->flags = flagVal; }}/*** Register the built-in LIKE and GLOB functions. The caseSensitive** parameter determines whether or not the LIKE operator is case** sensitive. GLOB is always case sensitive.*/void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ struct compareInfo *pInfo; if( caseSensitive ){ pInfo = (struct compareInfo*)&likeInfoAlt; }else{ pInfo = (struct compareInfo*)&likeInfoNorm; } sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0); sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0); sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, (struct compareInfo*)&globInfo, likeFunc, 0,0); setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); setLikeOptFlag(db, "like", caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);}/*** pExpr points to an expression which implements a function. If** it is appropriate to apply the LIKE optimization to that function** then set aWc[0] through aWc[2] to the wildcard characters and** return TRUE. If the function is not a LIKE-style function then** return FALSE.*/int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ FuncDef *pDef; if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){ return 0; } if( pExpr->pList->nExpr!=2 ){ return 0; } pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2, SQLITE_UTF8, 0); if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){ return 0; } /* The memcpy() statement assumes that the wildcard characters are ** the first three statements in the compareInfo structure. The ** asserts() that follow verify that assumption */ memcpy(aWc, pDef->pUserData, 3); assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0; return 1;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -