⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vdbe.c

📁 1.编译色情sqlite源代码为dll;2.运用sqlite3数据库存储二进制数据到数据库
💻 C
📖 第 1 页 / 共 5 页
字号:
    fprintf(out, " r:%g", p->r);  }else{    char zBuf[200];    sqlite3VdbeMemPrettyPrint(p, zBuf);    fprintf(out, " ");    fprintf(out, "%s", zBuf);  }}static void registerTrace(FILE *out, int iReg, Mem *p){  fprintf(out, "REG[%d] = ", iReg);  memTracePrint(out, p);  fprintf(out, "\n");}#endif#ifdef SQLITE_DEBUG#  define REGISTER_TRACE(R,M) if(p->trace&&R>0)registerTrace(p->trace,R,M)#else#  define REGISTER_TRACE(R,M)#endif#ifdef VDBE_PROFILE/*** The following routine only works on pentium-class processors.** It uses the RDTSC opcode to read the cycle count value out of the** processor and returns that value.  This can be used for high-res** profiling.*/__inline__ unsigned long long int hwtime(void){  unsigned long long int x;  __asm__("rdtsc\n\t"          "mov %%edx, %%ecx\n\t"          :"=A" (x));  return x;}#endif/*** The CHECK_FOR_INTERRUPT macro defined here looks to see if the** sqlite3_interrupt() routine has been called.  If it has been, then** processing of the VDBE program is interrupted.**** This macro added to every instruction that does a jump in order to** implement a loop.  This test used to be on every single instruction,** but that meant we more testing that we needed.  By only testing the** flag on jump instructions, we get a (small) speed improvement.*/#define CHECK_FOR_INTERRUPT \   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;/*** Execute as much of a VDBE program as we can then return.**** sqlite3VdbeMakeReady() must be called before this routine in order to** close the program with a final OP_Halt and to set up the callbacks** and the error message pointer.**** Whenever a row or result data is available, this routine will either** invoke the result callback (if there is one) or return with** SQLITE_ROW.**** If an attempt is made to open a locked database, then this routine** will either invoke the busy callback (if there is one) or it will** return SQLITE_BUSY.**** If an error occurs, an error message is written to memory obtained** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.** The error code is stored in p->rc and this routine returns SQLITE_ERROR.**** If the callback ever returns non-zero, then the program exits** immediately.  There will be no error message but the p->rc field is** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.**** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this** routine to return SQLITE_ERROR.**** Other fatal errors return SQLITE_ERROR.**** After this routine has finished, sqlite3VdbeFinalize() should be** used to clean up the mess that was left behind.*/int sqlite3VdbeExec(  Vdbe *p                    /* The VDBE */){  int pc;                    /* The program counter */  Op *pOp;                   /* Current operation */  int rc = SQLITE_OK;        /* Value to return */  sqlite3 *db = p->db;       /* The database */  u8 encoding = ENC(db);     /* The database encoding */  Mem *pIn1, *pIn2, *pIn3;   /* Input operands */  Mem *pOut;                 /* Output operand */  u8 opProperty;#ifdef VDBE_PROFILE  unsigned long long start;  /* CPU clock count at start of opcode */  int origPc;                /* Program counter at start of opcode */#endif#ifndef SQLITE_OMIT_PROGRESS_CALLBACK  int nProgressOps = 0;      /* Opcodes executed since progress callback. */#endif  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */  assert( db->magic==SQLITE_MAGIC_BUSY );  sqlite3BtreeMutexArrayEnter(&p->aMutex);  if( p->rc==SQLITE_NOMEM ){    /* This happens if a malloc() inside a call to sqlite3_column_text() or    ** sqlite3_column_text16() failed.  */    goto no_mem;  }  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );  p->rc = SQLITE_OK;  assert( p->explain==0 );  p->pResultSet = 0;  db->busyHandler.nBusy = 0;  CHECK_FOR_INTERRUPT;  sqlite3VdbeIOTraceSql(p);#ifdef SQLITE_DEBUG  if( p->pc==0 && ((p->db->flags & SQLITE_VdbeListing)!=0    || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS))  ){    int i;    printf("VDBE Program Listing:\n");    sqlite3VdbePrintSql(p);    for(i=0; i<p->nOp; i++){      sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);    }  }  if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS) ){    p->trace = stdout;  }#endif  for(pc=p->pc; rc==SQLITE_OK; pc++){    assert( pc>=0 && pc<p->nOp );    if( db->mallocFailed ) goto no_mem;#ifdef VDBE_PROFILE    origPc = pc;    start = hwtime();#endif    pOp = &p->aOp[pc];    /* Only allow tracing if SQLITE_DEBUG is defined.    */#ifdef SQLITE_DEBUG    if( p->trace ){      if( pc==0 ){        printf("VDBE Execution Trace:\n");        sqlite3VdbePrintSql(p);      }      sqlite3VdbePrintOp(p->trace, pc, pOp);    }    if( p->trace==0 && pc==0      && sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS) ){      sqlite3VdbePrintSql(p);    }#endif          /* Check to see if we need to simulate an interrupt.  This only happens    ** if we have a special test build.    */#ifdef SQLITE_TEST    if( sqlite3_interrupt_count>0 ){      sqlite3_interrupt_count--;      if( sqlite3_interrupt_count==0 ){        sqlite3_interrupt(db);      }    }#endif#ifndef SQLITE_OMIT_PROGRESS_CALLBACK    /* Call the progress callback if it is configured and the required number    ** of VDBE ops have been executed (either since this invocation of    ** sqlite3VdbeExec() or since last time the progress callback was called).    ** If the progress callback returns non-zero, exit the virtual machine with    ** a return code SQLITE_ABORT.    */    if( db->xProgress ){      if( db->nProgressOps==nProgressOps ){        int prc;        if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;        prc =db->xProgress(db->pProgressArg);        if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;        if( prc!=0 ){          rc = SQLITE_INTERRUPT;          goto vdbe_error_halt;        }        nProgressOps = 0;      }      nProgressOps++;    }#endif    /* Do common setup processing for any opcode that is marked    ** with the "out2-prerelease" tag.  Such opcodes have a single    ** output which is specified by the P2 parameter.  The P2 register    ** is initialized to a NULL.    */    opProperty = opcodeProperty[pOp->opcode];    if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){      assert( pOp->p2>0 );      assert( pOp->p2<=p->nMem );      pOut = &p->aMem[pOp->p2];      sqlite3VdbeMemRelease(pOut);      pOut->flags = MEM_Null;    }else     /* Do common setup for opcodes marked with one of the following    ** combinations of properties.    **    **           in1    **           in1 in2    **           in1 in2 out3    **           in1 in3    **    ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate    ** registers for inputs.  Variable pOut points to the output register.    */    if( (opProperty & OPFLG_IN1)!=0 ){      assert( pOp->p1>0 );      assert( pOp->p1<=p->nMem );      pIn1 = &p->aMem[pOp->p1];      REGISTER_TRACE(pOp->p1, pIn1);      if( (opProperty & OPFLG_IN2)!=0 ){        assert( pOp->p2>0 );        assert( pOp->p2<=p->nMem );        pIn2 = &p->aMem[pOp->p2];        REGISTER_TRACE(pOp->p2, pIn2);        if( (opProperty & OPFLG_OUT3)!=0 ){          assert( pOp->p3>0 );          assert( pOp->p3<=p->nMem );          pOut = &p->aMem[pOp->p3];        }      }else if( (opProperty & OPFLG_IN3)!=0 ){        assert( pOp->p3>0 );        assert( pOp->p3<=p->nMem );        pIn3 = &p->aMem[pOp->p3];        REGISTER_TRACE(pOp->p3, pIn3);      }    }else if( (opProperty & OPFLG_IN2)!=0 ){      assert( pOp->p2>0 );      assert( pOp->p2<=p->nMem );      pIn2 = &p->aMem[pOp->p2];      REGISTER_TRACE(pOp->p2, pIn2);    }else if( (opProperty & OPFLG_IN3)!=0 ){      assert( pOp->p3>0 );      assert( pOp->p3<=p->nMem );      pIn3 = &p->aMem[pOp->p3];      REGISTER_TRACE(pOp->p3, pIn3);    }    switch( pOp->opcode ){/******************************************************************************* What follows is a massive switch statement where each case implements a** separate instruction in the virtual machine.  If we follow the usual** indentation conventions, each case should be indented by 6 spaces.  But** that is a lot of wasted space on the left margin.  So the code within** the switch statement will break with convention and be flush-left. Another** big comment (similar to this one) will mark the point in the code where** we transition back to normal indentation.**** The formatting of each case is important.  The makefile for SQLite** generates two C files "opcodes.h" and "opcodes.c" by scanning this** file looking for lines that begin with "case OP_".  The opcodes.h files** will be filled with #defines that give unique integer values to each** opcode and the opcodes.c file is filled with an array of strings where** each string is the symbolic name for the corresponding opcode.  If the** case statement is followed by a comment of the form "/# same as ... #/"** that comment is used to determine the particular value of the opcode.**** Other keywords in the comment that follows each case are used to** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See** the mkopcodeh.awk script for additional information.**** Documentation about VDBE opcodes is generated by scanning this file** for lines of that contain "Opcode:".  That line and all subsequent** comment lines are used in the generation of the opcode.html documentation** file.**** SUMMARY:****     Formatting is important to scripts that scan this file.**     Do not deviate from the formatting style currently in use.*******************************************************************************//* Opcode:  Goto * P2 * * ***** An unconditional jump to address P2.** The next instruction executed will be ** the one at index P2 from the beginning of** the program.*/case OP_Goto: {             /* jump */  CHECK_FOR_INTERRUPT;  pc = pOp->p2 - 1;  break;}/* Opcode:  Gosub * P2 * * ***** Push the current address plus 1 onto the return address stack** and then jump to address P2.**** The return address stack is of limited depth.  If too many** OP_Gosub operations occur without intervening OP_Returns, then** the return address stack will fill up and processing will abort** with a fatal error.*/case OP_Gosub: {            /* jump */  assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );  p->returnStack[p->returnDepth++] = pc+1;  pc = pOp->p2 - 1;  break;}/* Opcode:  Return * * * * ***** Jump immediately to the next instruction after the last unreturned** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then** processing aborts with a fatal error.*/case OP_Return: {  assert( p->returnDepth>0 );  p->returnDepth--;  pc = p->returnStack[p->returnDepth] - 1;  break;}/* Opcode:  Halt P1 P2 * P4 ***** Exit immediately.  All open cursors, Fifos, etc are closed** automatically.**** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).** For errors, it can be some other value.  If P1!=0 then P2 will determine** whether or not to rollback the current transaction.  Do not rollback** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,** then back out all changes that have occurred during this execution of the** VDBE, but do not rollback the transaction. **** If P4 is not null then it is an error message string.**** There is an implied "Halt 0 0 0" instruction inserted at the very end of** every program.  So a jump past the last instruction of the program** is the same as executing Halt.*/case OP_Halt: {  p->rc = pOp->p1;  p->pc = pc;  p->errorAction = pOp->p2;  if( pOp->p4.z ){    sqlite3SetString(&p->zErrMsg, pOp->p4.z, (char*)0);  }  rc = sqlite3VdbeHalt(p);  assert( rc==SQLITE_BUSY || rc==SQLITE_OK );  if( rc==SQLITE_BUSY ){    p->rc = rc = SQLITE_BUSY;  }else{    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;  }  goto vdbe_return;}/* Opcode: Integer P1 P2 * * ***** The 32-bit integer value P1 is written into register P2.*/case OP_Integer: {         /* out2-prerelease */  pOut->flags = MEM_Int;  pOut->u.i = pOp->p1;  break;}/* Opcode: Int64 * P2 * P4 ***** P4 is a pointer to a 64-bit integer value.** Write that value into register P2.*/case OP_Int64: {           /* out2-prerelease */  assert( pOp->p4.pI64!=0 );  pOut->flags = MEM_Int;  pOut->u.i = *pOp->p4.pI64;  break;}/* Opcode: Real * P2 * P4 ***** P4 is a pointer to a 64-bit floating point value.** Write that value into register P2.*/case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */  pOut->flags = MEM_Real;  pOut->r = *pOp->p4.pReal;  break;}/* Opcode: String8 * P2 * P4 ***** P4 points to a nul terminated UTF-8 string. This opcode is transformed ** into an OP_String before it is executed for the first time.*/case OP_String8: {         /* same as TK_STRING, out2-prerelease */  assert( pOp->p4.z!=0 );  pOp->opcode = OP_String;  pOp->p1 = strlen(pOp->p4.z);#ifndef SQLITE_OMIT_UTF16  if( encoding!=SQLITE_UTF8 ){

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -