📄 bch_erasures.c
字号:
// ------------------------------------------------------------------------
//
// File: bch_erasures.c
// Date: April 3, 2002
//
// Description: Encoding and decoding routines for binary BCH codes
//
// Erasure correction by two errors-only decoding passes using
// the EUCLIDEAN ALGORITHM
//
// ------------------------------------------------------------------------
// This program is complementary material for the book:
//
// R.H. Morelos-Zaragoza, The Art of Error Correcting Coding, Wiley, 2002.
//
// ISBN 0471 49581 6
//
// This and other programs are available at http://the-art-of-ecc.com
//
// You may use this program for academic and personal purposes only.
// If this program is used to perform simulations whose results are
// published in a journal or book, please refer to the book above.
//
// The use of this program in a commercial product requires explicit
// written permission from the author. The author is not responsible or
// liable for damage or loss that may be caused by the use of this program.
//
// Copyright (c) 2002. Robert H. Morelos-Zaragoza. All rights reserved.
// ------------------------------------------------------------------------
#include <math.h>
#include <stdio.h>
int m, n, length, k, t, d;
int p[21];
int alpha_to[ 32768], index_of[ 32768], g[ 32768];
int recd[ 32768], data[ 32768], bb[ 32768];
int seed;
int numera, erapos[1024];
int numerr, errpos[1024], decerror = 0;
void
read_p()
/*
* Read m, the degree of a primitive polynomial p(x) used to compute the
* Galois field GF(2**m). Get precomputed coefficients p[] of p(x). Read
* the code length.
*/
{
int i, ninf;
printf("\nEnter a value of m such that the code length is\n");
printf("2**(m-1) - 1 < length <= 2**m - 1\n\n");
do {
printf("Enter m (between 2 and 15): ");
// printf("Enter m (between 2 and 20): ");
scanf("%d", &m);
} while ( !(m>1) || !(m<16) );
// } while ( !(m>1) || !(m<21) );
for (i=1; i<m; i++)
p[i] = 0;
p[0] = p[m] = 1;
if (m == 2) p[1] = 1;
else if (m == 3) p[1] = 1;
else if (m == 4) p[1] = 1;
else if (m == 5) p[2] = 1;
else if (m == 6) p[1] = 1;
else if (m == 7) p[1] = 1;
else if (m == 8) p[4] = p[5] = p[6] = 1;
else if (m == 9) p[4] = 1;
else if (m == 10) p[3] = 1;
else if (m == 11) p[2] = 1;
else if (m == 12) p[3] = p[4] = p[7] = 1;
else if (m == 13) p[1] = p[3] = p[4] = 1;
else if (m == 14) p[1] = p[11] = p[12] = 1;
else if (m == 15) p[1] = 1;
// else if (m == 16) p[2] = p[3] = p[5] = 1;
// else if (m == 17) p[3] = 1;
// else if (m == 18) p[7] = 1;
// else if (m == 19) p[1] = p[5] = p[6] = 1;
// else if (m == 20) p[3] = 1;
printf("p(x) = ");
n = 1;
for (i = 0; i <= m; i++) {
n *= 2;
printf("%1d", p[i]);
}
printf("\n");
n = n / 2 - 1;
ninf = (n + 1) / 2 - 1;
do {
printf("Enter code length (%d < length <= %d): ", ninf, n);
scanf("%d", &length);
} while ( !((length <= n)&&(length>ninf)) );
}
void
generate_gf()
/*
* Generate field GF(2**m) from the irreducible polynomial p(X) with
* coefficients in p[0]..p[m].
*
* Lookup tables:
* index->polynomial form: alpha_to[] contains j=alpha^i;
* polynomial form -> index form: index_of[j=alpha^i] = i
*
* alpha=2 is the primitive element of GF(2**m)
*/
{
register int i, mask;
mask = 1;
alpha_to[m] = 0;
for (i = 0; i < m; i++) {
alpha_to[i] = mask;
index_of[alpha_to[i]] = i;
if (p[i] != 0)
alpha_to[m] ^= mask;
mask <<= 1;
}
index_of[alpha_to[m]] = m;
mask >>= 1;
for (i = m + 1; i < n; i++) {
if (alpha_to[i - 1] >= mask)
alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1);
else
alpha_to[i] = alpha_to[i - 1] << 1;
index_of[alpha_to[i]] = i;
}
index_of[0] = -1;
}
void
gen_poly()
/*
* Compute the generator polynomial of a binary BCH code. Fist generate the
* cycle sets modulo 2**m - 1, cycle[][] = (i, 2*i, 4*i, ..., 2^l*i). Then
* determine those cycle sets that contain integers in the set of (d-1)
* consecutive integers {1..(d-1)}. The generator polynomial is calculated
* as the product of linear factors of the form (x+alpha^i), for every i in
* the above cycle sets.
*/
{
register int ii, jj, ll, kaux;
register int test, aux, nocycles, root, noterms, rdncy;
int cycle[1024][21], size[1024], min[1024], zeros[1024];
/* Generate cycle sets modulo n, n = 2**m - 1 */
cycle[0][0] = 0;
size[0] = 1;
cycle[1][0] = 1;
size[1] = 1;
jj = 1; /* cycle set index */
if (m > 9) {
printf("Computing cycle sets modulo %d\n", n);
printf("(This may take some time)...\n");
}
do {
/* Generate the jj-th cycle set */
ii = 0;
do {
ii++;
cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n;
size[jj]++;
aux = (cycle[jj][ii] * 2) % n;
} while (aux != cycle[jj][0]);
/* Next cycle set representative */
ll = 0;
do {
ll++;
test = 0;
for (ii = 1; ((ii <= jj) && (!test)); ii++)
/* Examine previous cycle sets */
for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++)
if (ll == cycle[ii][kaux])
test = 1;
} while ((test) && (ll < (n - 1)));
if (!(test)) {
jj++; /* next cycle set index */
cycle[jj][0] = ll;
size[jj] = 1;
}
} while (ll < (n - 1));
nocycles = jj; /* number of cycle sets modulo n */
printf("Enter the error correcting capability, t: ");
scanf("%d", &t);
d = 2 * t + 1;
/* Search for roots 1, 2, ..., d-1 in cycle sets */
kaux = 0;
rdncy = 0;
for (ii = 1; ii <= nocycles; ii++) {
min[kaux] = 0;
test = 0;
for (jj = 0; ((jj < size[ii]) && (!test)); jj++)
for (root = 1; ((root < d) && (!test)); root++)
if (root == cycle[ii][jj]) {
test = 1;
min[kaux] = ii;
}
if (min[kaux]) {
rdncy += size[min[kaux]];
kaux++;
}
}
noterms = kaux;
kaux = 1;
for (ii = 0; ii < noterms; ii++)
for (jj = 0; jj < size[min[ii]]; jj++) {
zeros[kaux] = cycle[min[ii]][jj];
kaux++;
}
k = length - rdncy;
if (k<0)
{
printf("Parameters invalid!\n");
exit(0);
}
printf("This is a (%d, %d, %d) binary BCH code\n", length, k, d);
/* Compute the generator polynomial */
g[0] = alpha_to[zeros[1]];
g[1] = 1; /* g(x) = (X + zeros[1]) initially */
for (ii = 2; ii <= rdncy; ii++) {
g[ii] = 1;
for (jj = ii - 1; jj > 0; jj--)
if (g[jj] != 0)
g[jj] = g[jj - 1] ^ alpha_to[(index_of[g[jj]] + zeros[ii]) % n];
else
g[jj] = g[jj - 1];
g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n];
}
printf("Generator polynomial:\ng(x) = ");
for (ii = 0; ii <= rdncy; ii++) {
printf("%d", g[ii]);
if (ii && ((ii % 50) == 0))
printf("\n");
}
printf("\n");
}
void
encode_bch()
/*
* Compute redundacy bb[], the coefficients of b(x). The redundancy
* polynomial b(x) is the remainder after dividing x^(length-k)*data(x)
* by the generator polynomial g(x).
*/
{
register int i, j;
register int feedback;
for (i = 0; i < length - k; i++)
bb[i] = 0;
for (i = k - 1; i >= 0; i--) {
feedback = data[i] ^ bb[length - k - 1];
if (feedback != 0) {
for (j = length - k - 1; j > 0; j--)
if (g[j] != 0)
bb[j] = bb[j - 1] ^ feedback;
else
bb[j] = bb[j - 1];
bb[0] = g[0] && feedback;
} else {
for (j = length - k - 1; j > 0; j--)
bb[j] = bb[j - 1];
bb[0] = 0;
}
}
}
void
decode_bch()
{
register int i, j, u, q, t2, count = 0, syn_error = 0;
int elp[1026][1024], l[1], s[1025];
int root[200], loc[200], err[1024], reg[201];
int qt[513], r[129][513];
int b[12][513];
int degr[129], degb[129];
int temp, aux[513];
t2 = 2 * t;
/* Compute the syndromes */
printf("S(x) = ");
for (i = 1; i <= t2; i++) {
s[i] = 0;
for (j = 0; j < length; j++)
if (recd[j] != 0)
s[i] ^= alpha_to[(i * j) % n];
if (s[i] != 0)
syn_error = 1; /* set error flag if non-zero syndrome */
/* convert syndrome from polynomial form to index form */
s[i] = index_of[s[i]];
printf("%3d ", s[i]);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -