📄 svmroccurve.m
字号:
function [AUC,tpr,fpr,b]=svmroccurve(xtest,ytest,xsup,w,w0,kernel,kerneloption,span)% USAGE%% [AUC,tpr,fpr,b]=svmroccurve(xtest,ytest,xsup,w,w0,kernel,kerneloption,span)%% process the ROC curve and the AUC for SVM model (either SVMROC or SVM L2) % % the inputs are as usual for SVM%% if nargin == 2 then the entries are% % [AUC,tpr,fpr,WMW,b]=svmroccurve(ypred,ytest);%%% the outputs%% AUC Area under curve value% tpr,fpr true positive and false positive vector for ROC curve plotting purpose% b a new bias for the decision function. b can replace w0 and it has been% processed so that the decision function corresponds to the one where the roc% curve and the (1,0)-(0,1) diagonal meets%%% % % 30/07/2004 A. Rakotomamonjyeps=1e-7;classcode=[1 -1];if nargin >2 ypred = svmrocval(xtest,xsup,w,w0,kernel,kerneloption,span);else ypred=xtest; w0=0;end;npos=sum(ytest==1);nneg=sum(ytest==-1);% % %WMW statistics% % indpos=find(ytest==classcode(1));% indneg=find(ytest==classcode(2));% A=0;% for i=1:npos% A=A+ sum( (ypred(indpos(i))- ypred(indneg)) > eps);% % end;% WMW=A/npos/nneg;% AUC=WMW;% % if nargout >1% % N=length(ypred);% [ypred,ind]=sort(ypred);% ytest=ytest(ind);% b=[min(ypred)-1;ypred];% for i=1:N+1;% hi=sign(ypred-b(i)-eps);% [Conf,metric]=ConfusionMatrix(hi,ytest,classcode);% tp(i)=Conf(1,1);% fp(i)=Conf(2,1);% end;% % % tpr=tp/npos;% fpr=fp/nneg;% % % % %calcul de b pour un cout erreur egale
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -