📄 exrankboost1.m
字号:
%function exrankboost1(data);% Model Selection for analysing rankboost performance % on ROC curve optimization with real data % % This code has been used in the SVM-AUC TechRep% 30/07/2004 A. Rakotomamonjyclear allclose alldata='credit';file=['../data/' data '/' data '.mat'];load(file);nbtrain=300;classcode=[1 -1];Tvec=[50 100];verbose=0;for i=1:20 fprintf('%d..',i); [xapp,yapp,xtest,ytest,indice]=CreateDataAppTest(x,y,nbtrain, classcode); [xapp,xtest] = normalizemeanstd(xapp,xtest); for j=1:length(Tvec) T=Tvec(j); fprintf('-'); [alpha,threshold,rankfeat]=rankboostAUC(xapp,yapp,T); ypred=rankboostAUCval(xapp,alpha,threshold,rankfeat,T); [AUC,tpr,fpr,b]=rankroccurve(ypred,yapp); ypredtest=rankboostAUCval(xtest,alpha,threshold,rankfeat,T); [AUCtest,tpr,fpr]=rankroccurve(ypredtest,ytest); [Conf,metric]=ConfusionMatrix(sign(ypredtest+b),ytest,classcode); MAUCtest(j,i)=AUCtest; Maccur(j,i)=metric.accuracy; Mprecision(j,i)=metric.precision; Mfmeasure(j,i)=metric.fmeasure; Mwracc(j,i)=metric.wracc; Mdetection(j,i)=metric.detection; end; end;mauctest=mean(MAUCtest,2);maccur=mean(Maccur,2);mprecision=mean(Mprecision,2);mfmeasure=mean(Mfmeasure,2);mwracc=mean(Mwracc,2);mdetection=mean(Mdetection,2);% sauctest=std(MAUCtest,0,2);% saccur=std(Maccur,0,2);% sprecision=std(Mprecision,0,3);% sfmeasure=std(Mfmeasure,0,3);% swracc=std(Mwracc,0,3);% sdetection=std(Mdetection,0,3);mauctest=mean(MAUCtest,2);maccur=mean(Maccur,2);%save([data 'rank.mat'])
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -