📄 featselregr2w2gdrandom.m
字号:
function [RankedVariables,nbsvvec,Values,NbQP]=FeatSelregr2w2GD(x,y,c,epsilon,kernel,kerneloption,verbose,FeatSeloption)
% Usage
%
% [RankedVariables,nbsvvec,Values,NbQP]=FeatSelregr2w2GD(x,y,c,epsilon,kernel,kerneloption,verbose,FeatSeloption)
%
%
%
% each variable is weighted with a scaling parameter which are optimized through gradient
% descent. After convergence, the variables are then weigthed according the magnitude of the scaling parameters
%
% x,y : input data
% c : penalization of misclassified examples
% kernel : kernel type
% kerneloption : kernel hyperparameters
% verbose
% span : matrix for semiparametric learning
% FeatSeloption : structure containing FeatSeloption parameters
% Fields
%
% GDitermax : stopping criterion. Maximal number of criterion
%
% GDthresh : stopping criterion. stop when L2 norm of scaling vector variation is
% below this threshold
%
%% GDnbiterrandommax : number of random initialization (default 5)
%
% alain.rakoto@insa-rouen.fr
%
% \bibitem[Rakotomamonjy(2006)]{rakoto_featselreg}
% A.~Rakotomamonjy.
% \newblock Analysis of SVM regression bound for feature selection,
% \newblock Neurocomputing 2006
% 03/2006 AR
%----------------------------------------------------------%
% Testing Fields Existence %
%----------------------------------------------------------%
if isfield(FeatSeloption,'GDitermax')
itermax=FeatSeloption.GDitermax;
else
itermax=20;
end;
if isfield(FeatSeloption,'GDthresh')
thresh=FeatSeloption.GDthresh;
else
thresh=0.01;
end;
if isfield(FeatSeloption,'GDnbiterrandommax')
nbiterrandommax=FeatSeloption.GDnbiterrandommax;
else
nbiterrandommax=5;
end;
[nbdata,nbvar]=size(x);
caux=diag((1/c)*ones(nbdata*2,1));
caux1=diag((1/c)*ones(length(y),1));
BoundMax=inf;
scalingmat=2*rand(nbiterrandommax,nbvar)+0;
scalingmat(1,:)=ones(1,nbvar);
for iterrandom=1:nbiterrandommax
scaling=scalingmat(iterrandom,:);%
SelectedVariables = [1:nbdata]; %
alphaall=[];
betaall=[];
nbsvvec=[];
Values=[];
NbQP=0;
iter=0;
scalingold=scaling-1;
verboseaux=0;
if verbose
fprintf('%s \t | %s \t\t | %s \n','iter', 'Old', 'New');
end;
while norm(scaling-scalingold)/norm(scaling) > thresh & iter<itermax
xaux=x.*(ones(nbdata,1)*scaling);
ps=svmkernel(xaux,kernel,kerneloption);
lambd=1e-7;
%------------------------------------------------------------------
ps=svmkernel(xaux,kernel,kerneloption);
n=size(xaux,1);
I = eye(n);
Idif = [I -I];
H = Idif'*ps*Idif + caux;
ee = [-epsilon+y ; -epsilon-y]; % [ alpha* alpha]
A = [-ones(1,n) +ones(1,n) ]';
b=0;
Cinf=inf;
[alpha,bias,posalpha]=monqp(H,ee,A,b,Cinf,lambd,verboseaux,xaux,ps,alphaall);NbQP=NbQP+1;
alphaall=zeros(length(H),1);
alphaall(posalpha)=alpha;
posAlphaStar=find(alphaall(1:n)>0);
posAlpha=find(alphaall(n+1:2*n)> 0);
newposalpha=sort([posAlphaStar;posAlpha]);
sumalpha=sum(alphaall);
AlphaStar=alphaall(1:n);
Alpha=alphaall(n+1:end);
AlphaHat=AlphaStar-Alpha;
%-------------------------------------------------------------------
%---------------------------------------------%
% calcul de r2 %
%---------------------------------------------%
psc=ps+caux1;
kerneloptionr2.matrix=psc;
[betaall,r2,posbeta]= r2smallestsphere([],[],kerneloptionr2);
Bound=sumalpha*r2;
pos=union(newposalpha,posbeta);
psaux=ps(pos,pos);
SelectVariablesAux=SelectedVariables;
for i=1:nbvar
xnon2= xaux(pos,i);
xpos=xaux(pos,:);
[kernelderiv_1,kernelderiv_2]=featselkernelderivative(psaux,xnon2,kernel,kerneloption,'scal',xpos);
kernelderiv_1=kernelderiv_1/scaling(i);
% equation4.2 papier CJ Lin
M= [psaux + caux1(pos,pos) ones(length(pos),1);ones(1,length(pos)) 0];
dalphahatb=M\([-kernelderiv_1*AlphaHat(pos); 0]);
dalphahat=dalphahatb(1:end-1);
[aux,ind,ind2]=intersect(pos,posAlphaStar);
dAlphaStar=dalphahat(ind); % ind are the indice of the value of posAlphaStar in pos
% hence we are getting the derivative of the AlphaStar
[aux,ind]=intersect(pos,posAlpha);
dAlpha=-dalphahat(ind);
dsumalpha=sum(dAlphaStar)+sum(dAlpha);
%-----------------------------------------
dw2r2= dsumalpha*r2;
dr2w2= (-(betaall(pos))'*kernelderiv_1* (betaall(pos)) + (betaall(pos))'*diag(kernelderiv_1))*sumalpha;
r2w2grad(i)= dw2r2+dr2w2 ;
end
r2w2grad=r2w2grad/norm(r2w2grad);
%----------------------------------------------------------------------
% LINE SEARCH
%----------------------------------------------------------------------
step=1;
scalingaux=scaling;
while step > 1e-10;
scalingaux=scaling-step*r2w2grad;
xaux=x.*(ones(nbdata,1)*scalingaux);
ps=svmkernel(xaux,kernel,kerneloption);
n=size(xaux,1);
I = eye(n);
Idif = [I -I];
H = Idif'*ps*Idif + caux;
ee = [-epsilon+y ; -epsilon-y]; % [ alpha* alpha]
A = [-ones(1,n) +ones(1,n) ]';
b=0;
Cinf=inf;
[alpha,bias,posalpha]=monqp(H,ee,A,b,Cinf,lambd,verboseaux,xaux,ps,alphaall);NbQP=NbQP+1;
alphaall=zeros(length(H),1);
alphaall(posalpha)=alpha;
%-------------------------------------------------------------------
%---------------------------------------------%
% calcul de r2 %
%---------------------------------------------%
psc=ps+caux1;
kerneloptionr2.matrix=psc;
[betaall,r2,posbeta]= r2smallestsphere([],[],kerneloptionr2);NbQP=NbQP+1;
BoundTemp=sum(alpha)*r2;
if BoundTemp > Bound
step=step/5;
else
break
end;
end;
scalingold=scaling;
scaling=scaling - step*r2w2grad;
iter=iter+1;
if verbose
fprintf('%d \t\t |%2.2f \t\t | %2.2f \n',iter,Bound, BoundTemp);
end
end;
if Bound < BoundMax
[ind,RankedVariables]=(sort(abs(scaling),2));
Values=(scaling(RankedVariables));
RankedVariables=fliplr(RankedVariables);
Values=fliplr(Values);
BoundMax=Bound;
end;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -