⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 featselregspanboundgdrandom.m

📁 支持向量机SVM和核函数的MATLAB程序集
💻 M
字号:
function [RankedVariables,nbsvvec,Values,NbQP,NbInv]=FeatSelspanboundGD(x,y,c,epsilon,kernel,kerneloption,verbose,FeatSeloption)

%   USAGE
%
%  [RankedVariables,nbsvvec,Values]=FeatSelspanboundGD(x,y,c,epsilon,kernel,kerneloption,verbose,FeatSeloption)
%
%   Backward Variable Selection using grad of Span Estimate as a criterion   
%
%   x,y     : input data
%   c       : penalization of misclassified examples
%   kernel  : kernel type
%   kerneloption : kernel hyperparameters
%   verbose
%   span    : matrix for semiparametric learning
%   FeatSeloption : structure containing FeatSeloption parameters
%           Fields           
%
%           SEeta     : regularisation term of span estimate. see CJ Lin paper
%
%           GDitermax : stopping criterion. Maximal number of criterion
%           
%           GDthresh  : stopping criterion. stop when L2 norm of scaling vector variation is 
%                     below this threshold
%
%%           GDnbiterrandommax : number of random initialization (default 5)
%
% alain.rakoto@insa-rouen.fr
%   
%   \bibitem[Rakotomamonjy(2006)]{rakoto_featselreg}
%    A.~Rakotomamonjy.
%   \newblock Analysis of SVM regression bound for feature selection,
%   \newblock Neurocomputing 2006
%   03/2006 AR



%----------------------------------------------------------%
%              Testing Fields Existence                    % 
%----------------------------------------------------------%

if  isfield(FeatSeloption,'SEeta')
    eta=FeatSeloption.SEeta;
else
    eta=0.001;
end;

if  isfield(FeatSeloption,'GDitermax')
    itermax=FeatSeloption.GDitermax;
else
    itermax=20;
end;
if  isfield(FeatSeloption,'GDthresh')
    thresh=FeatSeloption.GDthresh;
else
    thresh=0.01;
end;
if  isfield(FeatSeloption,'GDnbiterrandommax')
     nbiterrandommax=FeatSeloption.GDnbiterrandommax;
else
     nbiterrandommax=5;
end;


% Initialization
[nbdata,nbvar]=size(x);
lambd=1e-8;
lambdaregul=1e-8;
caux=diag((1/c)*ones(nbdata*2,1));
caux1=diag((1/c)*ones(nbdata,1));

BoundMax=inf;
scalingmat=2*rand(nbiterrandommax,nbvar)+0;
scalingmat(1,:)=ones(1,nbvar);
for iterrandom=1:nbiterrandommax
    scaling=scalingmat(iterrandom,:);
        SelectedVariables = [1:nbdata]; %
    alphaall=[];
    nbsvvec=[];
    Values=[];
    iter=0;
    NbQP=0;
    NbInv=0;
    scalingold=scaling-1;
    verboseaux=0;
    
    if verbose
        fprintf('%s \t | %s  \t\t\t |  %s   \n','iter', 'Old', 'New');
    end;
    
    
    while    norm(scaling-scalingold)/norm(scaling) > thresh & iter<itermax
        
        
        xaux=x.*(ones(nbdata,1)*scaling);
        ps=svmkernel(xaux,kernel,kerneloption);
        lambd=1e-7;
        n=size(xaux,1);
        I = eye(n);
        Idif = [I -I];
        H = Idif'*ps*Idif + caux;
        ee = [-epsilon+y ; -epsilon-y]; % [ alpha*   alpha]
        A = [-ones(1,n)  +ones(1,n) ]';
        b=0;   
        Cinf=inf;
        [alphatemp,bias,posalpha]=monqp(H,ee,A,b,Cinf,lambd,verboseaux,x,ps,alphaall);NbQP=NbQP+1;
        nbsv=length(alphatemp); 
        nbsvvec=[nbsvvec nbsv];
        alphaall=zeros(length(H),1);
        alphaall(posalpha)=alphatemp;
        
        % calcul de Alpha et AlphaStar
        AlphaStar=alphaall(1:n);
        Alpha=alphaall(n+1:end);
        AlphaHat=AlphaStar-Alpha;
        AlphaPlusAlphaStar=Alpha+AlphaStar;
        posAlphaStar=find(alphaall(1:n)>0);
        posAlpha=find(alphaall(n+1:2*n)> 0);
        
        newpos=sort([posAlphaStar;posAlpha]); 
        
        
        % Calcul du span bound
        
        D=(eta./(Alpha(newpos)+AlphaStar(newpos)));
        ktilde=ps(newpos,newpos) +caux1(newpos,newpos);
        M=[ktilde ones(nbsv,1); ones(1,nbsv) 0];
        Mtilde=M+diag([D;0]);
        invMtilde=inv(Mtilde+lambdaregul*eye(nbsv+1)); NbInv=NbInv+1;
        MtildeInvDiag=1./diag(invMtilde);
        sp2=MtildeInvDiag(1:nbsv)-D;
        
        Bound=(AlphaPlusAlphaStar(newpos))'*sp2;
        
        psaux=ps(newpos,newpos);
        
        SelectVariablesAux=SelectedVariables;
        T=[];
        
        for i=1:nbvar
            
            
            xnon2= xaux(newpos,i); 
            xpos=xaux(newpos,:);
            [kernelderiv_1,kernelderiv_2]=featselkernelderivative(psaux,xnon2,kernel,kerneloption,'scal',xpos);
            kernelderiv_1=kernelderiv_1/scaling(i);
            
            % Calcul de dAlpha et dAlphaStar
            M= [psaux + caux1(newpos,newpos)  ones(length(newpos),1);ones(1,length(newpos)) 0];
            dalphahatb=M\([-kernelderiv_1*AlphaHat(newpos); 0]);NbInv=NbInv+1;
            dalphahat=dalphahatb(1:end-1);
            
            % ind are the indice of the value of posAlphaStar in pos
            % hence we are getting the derivative of the AlphaStar  
            [aux,ind]=intersect(newpos,posAlphaStar);
            dAlphaStar=dalphahat(ind);    
            [aux,ind2]=intersect(newpos,posAlpha);
            dAlpha=-dalphahat(ind2);
            dAlphaPlusAlphaStar=zeros(nbsv,1);
            dAlphaPlusAlphaStar(ind)=dAlphaStar;
            dAlphaPlusAlphaStar(ind2)=dAlpha;
            
            %--------------------------------------------------------
            dD=-(eta./(AlphaPlusAlphaStar(newpos).^2)).*(   dAlphaPlusAlphaStar   ); 
            %---------------------------------------------------------
            %
            dMtilde= [kernelderiv_1+diag(dD) zeros(nbsv,1); zeros(1,nbsv) 0];
            dMtildeinvDiag= diag(invMtilde*dMtilde*invMtilde);
            dSp= - (MtildeInvDiag(1:nbsv)).^2.*dMtildeinvDiag(1:nbsv)- dD;
            
            
            
            
            T(i)=  ((dAlphaPlusAlphaStar'*sp2)+  (AlphaPlusAlphaStar(newpos))'*dSp);  
            
            
        end
        
        %   keyboard
        T=T/norm(T);
        
        %----------------------------------------------------------------------
        %           LINE SEARCH
        %----------------------------------------------------------------------
        step=1;
        scalingaux=scaling;
        while step > 1e-10;
            scalingaux=scaling-step*T;
            xaux=x.*(ones(nbdata,1)*scalingaux);
            ps=svmkernel(xaux,kernel,kerneloption);
            lambd=1e-7;
            n=size(xaux,1);
            I = eye(n);
            Idif = [I -I];
            H = Idif'*ps*Idif + caux;
            
            [alphatemp,bias,posalpha]=monqp(H,ee,A,b,Cinf,lambd,verboseaux,x,ps,alphaall);NbQP=NbQP+1;
            nbsv=length(alphatemp); 
            
            alphaall=zeros(length(H),1);
            alphaall(posalpha)=alphatemp;
            AlphaStar=alphaall(1:n);
            Alpha=alphaall(n+1:end);
            AlphaHat=AlphaStar-Alpha;
            AlphaPlusAlphaStar=Alpha+AlphaStar;
            posAlphaStar=find(alphaall(1:n)>0);
            posAlpha=find(alphaall(n+1:2*n)> 0);
            
            newpos=sort([posAlphaStar;posAlpha]); 
            
            D=(eta./(Alpha(newpos)+AlphaStar(newpos)));
            ktilde=ps(newpos,newpos) +caux1(newpos,newpos);
            M=[ktilde ones(nbsv,1); ones(1,nbsv) 0];
            Mtilde=M+diag([D;0]);
            invMtilde=inv(Mtilde+lambdaregul*eye(nbsv+1)); NbInv=NbInv+1;
            MtildeInvDiag=1./diag(invMtilde);
            sp2=MtildeInvDiag(1:nbsv)-D;
            
            BoundTemp=(AlphaPlusAlphaStar(newpos))'*sp2;
            if BoundTemp > Bound
                step=step/5;
            else
                break
            end;
        end; 
        scalingold=scaling;
        scaling=scaling -step*T;
        iter=iter+1;  
        if verbose
            fprintf('%d \t\t |%2.2f  \t\t |  %2.2f   \n',iter,Bound, BoundTemp);
        end
        
        
    end;
    

    
    if Bound < BoundMax
            [ind,RankedVariables]=(sort(abs(scaling),2));
             Values=(scaling(RankedVariables));
            RankedVariables=fliplr(RankedVariables);
               Values=fliplr(Values);
            BoundMax=Bound;
    end;
    
    
end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -