📄 classonlycmar_app.java
字号:
/* -------------------------------------------------------------------------- *//* *//* APRIORI-TFP CMAR (CLASSIFICATION BASED ON *//* MULTIPLE ASSOCIATION RULES) CLASSIFIER ONLY APPLICATION *//* *//* Frans Coenen *//* *//* Friday 5 March 2004 *//* *//* Department of Computer Science *//* The University of Liverpool *//* *//* -------------------------------------------------------------------------- */import java.io.*;/* Classification application the CMAR (Classification based on Multiple Associate Rules) algorithm proposed by Wenmin Li, Jiawei Han and Jian Pei,but founded on Apriori-TFP. Build only a classifier does not test accuracy.Compile using:javac ClassOnlyCMAR_App.javaRun using the java interpreter. Example:java ClassOnlyCMAR_App -FpimaIndians.D42.N768.C2.num -N2(-F filename, -N number of classifiers) would produce a classifier of theform:(1) {1 4 5 7} -> {41} 91.48%, (172.0, 188.0, 500.0)(2) {4 5 7} -> {41} 90.64%, (184.0, 203.0, 500.0)(3) {15} -> {41} 90.64%, (155.0, 171.0, 500.0)(4) {1 5 7} -> {41} 89.9%, (187.0, 208.0, 500.0)(5) {2 4 7} -> {41} 89.74%, (175.0, 195.0, 500.0)(6) {1 2 4 7} -> {41} 89.18%, (165.0, 185.0, 500.0)(7) {5 7} -> {41} 88.88%, (200.0, 225.0, 500.0)(8) {1 4 7} -> {41} 87.9%, (218.0, 248.0, 500.0)(9) {4 7} -> {41} 87.5%, (231.0, 264.0, 500.0)(10) {1 6 7} -> {41} 87.3%, (165.0, 189.0, 500.0)(11) {6 7} -> {41} 86.89%, (179.0, 206.0, 500.0)(12) {1 2 7} -> {41} 85.59%, (208.0, 243.0, 500.0)(13) {1 4 5 6} -> {41} 85.55%, (154.0, 180.0, 500.0)(14) {2 7} -> {41} 85.38%, (222.0, 260.0, 500.0)(15) {1 2 4 5} -> {41} 83.88%, (177.0, 211.0, 500.0)(16) {1 7} -> {41} 83.18%, (282.0, 339.0, 500.0)(17) {1 5 6} -> {41} 83.16%, (163.0, 196.0, 500.0)(18) {1 4 6} -> {41} 83.11%, (187.0, 225.0, 500.0)(19) {2 4 5} -> {41} 82.71%, (201.0, 243.0, 500.0)(20) {4 5 6} -> {41} 82.6%, (171.0, 207.0, 500.0)(21) {2 4 6} -> {41} 82.44%, (155.0, 188.0, 500.0)(22) {7} -> {41} 81.74%, (300.0, 367.0, 500.0)(23) {1 4 5} -> {41} 81.29%, (239.0, 294.0, 500.0)(24) {1 2 4} -> {41} 80.91%, (229.0, 283.0, 500.0)(25) {4 6} -> {41} 80.62%, (208.0, 258.0, 500.0)Percentage value is the confidence. Values in brackets are: support forrule, support for antecdent (same as that for rule if confidence is to be100%) and support for consequent. */public class ClassOnlyCMAR_App { // ------------------- FIELDS ------------------------ // None // ---------------- CONSTRUCTORS --------------------- // None // ------------------ METHODS ------------------------ public static void main(String[] args) throws IOException { double time1 = (double) System.currentTimeMillis(); // Create instance of class ClassificationPRM AprioriTFP_CMAR newClassification = new AprioriTFP_CMAR(args); // Read data to be mined from file (method in AssocRuleMining class) // and set number of rows in training set newClassification.inputDataSet(); newClassification.setNumRowsInTrainingSet(); // Reorder input data according to frequency of single attributes // excluding classifiers. Proceed as follows: (1) create a conversion // array (with classifiers left at end), (2) reorder the attributes // according to this array. Do not throw away unsupported attributes // as when data set is split (if distribution is not exactly even) we // may have thrown away supported attributes that contribute to the // generation of CRs. NB Never throw away classifiers even if // unsupported! newClassification.idInputDataOrdering(); // ClassificationAprioriT newClassification.recastInputData(); // AssocRuleMining // Mine data, produce T-tree and generate CRs double accuracy = newClassification.startCMARclassification(); newClassification.outputDuration(time1, (double) System.currentTimeMillis()); // Output //newClassification.outputFrequentSets(); newClassification.outputNumFreqSets(); newClassification.outputNumUpdates(); newClassification.outputStorage(); //newClassification.outputTtree(); System.out.println("Accuracy = " + accuracy); newClassification.getCurrentRuleListObject().outputNumCMARrules(); newClassification.getCurrentRuleListObject().outputCMARrules(); // End System.exit(0); } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -