📄 som_make.m
字号:
function sMap = som_make(D, varargin)%SOM_MAKE Create, initialize and train Self-Organizing Map.%% sMap = som_make(D, [[argID,] value, ...])%% sMap = som_make(D);% sMap = som_make(D, 'munits', 20);% sMap = som_make(D, 'munits', 20, 'hexa', 'sheet');% sMap = som_make(D, 'msize', [4 6 7], 'lattice', 'rect');%% Input and output arguments ([]'s are optional): % D (matrix) training data, size dlen x dim% (struct) data struct% [argID, (string) See below. The values which are unambiguous can % value] (varies) be given without the preceeding argID.%% sMap (struct) map struct%% Here are the valid argument IDs and corresponding values. The values % which are unambiguous (marked with '*') can be given without the% preceeding argID.% 'init' *(string) initialization: 'randinit' or 'lininit' (default)% 'algorithm' *(string) training: 'seq' or 'batch' (default) or 'sompak'% 'munits' (scalar) the preferred number of map units% 'msize' (vector) map grid size% 'mapsize' *(string) do you want a 'small', 'normal' or 'big' map% Any explicit settings of munits or msize override this.% 'lattice' *(string) map lattice, 'hexa' or 'rect'% 'shape' *(string) map shape, 'sheet', 'cyl' or 'toroid'% 'neigh' *(string) neighborhood function, 'gaussian', 'cutgauss',% 'ep' or 'bubble'% 'topol' *(struct) topology struct% 'som_topol','sTopol' = 'topol'% 'mask' (vector) BMU search mask, size dim x 1% 'name' (string) map name% 'comp_names' (string array / cellstr) component names, size dim x 1% 'tracking' (scalar) how much to report, default = 1% 'training' (string) 'short', 'default', 'long'% (vector) size 1 x 2, first length of rough training in epochs, % and then length of finetuning in epochs%% For more help, try 'type som_make' or check out online documentation.% See also SOM_MAP_STRUCT, SOM_TOPOL_STRUCT, SOM_TRAIN_STRUCT,% SOM_RANDINIT, SOM_LININIT, SOM_SEQTRAIN, SOM_BATCHTRAIN. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% som_make%% PURPOSE%% Creates, initializes and trains a SOM using default parameters.%% SYNTAX%% sMap = som_make(D);% sMap = som_make(...,'argID',value,...);% sMap = som_make(...,value,...);%% DESCRIPTION%% Creates, initializes and trains a SOM with default parameters. Uses functions% SOM_TOPOL_STRUCT, SOM_TRAIN_STRUCT, SOM_DATA_STRUCT and SOM_MAP_STRUCT to come% up with the default values.%% First, the number of map units is determined. Unless they are% explicitly defined, function SOM_TOPOL_STRUCT is used to determine this.% It uses a heuristic formula of 'munits = 5*dlen^0.54321'. The 'mapsize'% argument influences the final number of map units: a 'big' map has % x4 the default number of map units and a 'small' map has x0.25 the% default number of map units. %% After the number of map units has been determined, the map size is % determined. Basically, the two biggest eigenvalues of the training% data are calculated and the ratio between sidelengths of the map grid% is set to this ratio. The actual sidelengths are then set so that % their product is as close to the desired number of map units as% possible.%% Then the SOM is initialized. First, linear initialization along two% greatest eigenvectors is tried, but if this can't be done (the% eigenvectors cannot be calculated), random initialization is used% instead. After initialization, the SOM is trained in two phases:% first rough training and then fine-tuning. If the 'tracking'% argument is greater than zero, the average quantization error and% topographic error of the final map are calculated.%% REQUIRED INPUT ARGUMENTS%% D The data to use in the training.% (struct) A data struct. If a struct is given, '.comp_names' field as % well as '.comp_norm' field is copied to the map struct.% (matrix) A data matrix, size dlen x dim. The data matrix may% contain unknown values, indicated by NaNs. % % OPTIONAL INPUT ARGUMENTS %% argID (string) Argument identifier string (see below).% value (varies) Value for the argument (see below).%% Here are the valid argument IDs and corresponding values. The values % which are unambiguous (marked with '*') can be given without the% preceeding argID.% 'init' *(string) initialization: 'randinit' or 'lininit' (default)% 'algorithm' *(string) training: 'seq' or 'batch' (default) or 'sompak'% 'munits' (scalar) the preferred number of map units% 'msize' (vector) map grid size% 'mapsize' *(string) do you want a 'small', 'normal' or 'big' map% Any explicit settings of munits or msize override this.% 'lattice' *(string) map lattice, 'hexa' or 'rect'% 'shape' *(string) map shape, 'sheet', 'cyl' or 'toroid'% 'neigh' *(string) neighborhood function, 'gaussian', 'cutgauss',% 'ep' or 'bubble'% 'topol' *(struct) topology struct% 'som_topol','sTopol' = 'topol'% 'mask' (vector) BMU search mask, size dim x 1% 'name' (string) map name% 'comp_names' (string array / cellstr) component names, size dim x 1% 'tracking' (scalar) how much to report, default = 1% 'training' (string) 'short', 'default' or 'long'% (vector) size 1 x 2, first length of rough training in epochs, % and then length of finetuning in epochs%% OUTPUT ARGUMENTS% % sMap (struct) the trained map struct%% EXAMPLES%% To simply train a map with default parameters: %% sMap = som_make(D); % % With the optional arguments, the initialization and training can be% influenced. To change map size, use 'msize', 'munits' or 'mapsize'% arguments: %% sMap = som_make(D,'mapsize','big'); or sMap=som_make(D,'big');% sMap = som_make(D,'munits', 100);% sMap = som_make(D,'msize', [20 10]); %% Argument 'algorithm' can be used to switch between 'seq' and 'batch'% algorithms. 'batch' is the default, so to use 'seq' algorithm: %% sMap = som_make(D,'algorithm','seq'); or sMap = som_make(D,'seq'); %% The 'tracking' argument can be used to control the amout of reporting% during training. The argument is used in this function, and it is% passed to the training functions. To make the function work silently% set it to 0.%% sMap = som_make(D,'tracking',0); %% SEE ALSO% % som_map_struct Create a map struct.% som_topol_struct Default values for SOM topology.% som_train_struct Default values for SOM training parameters.% som_randinint Random initialization algorithm.% som_lininit Linear initialization algorithm.% som_seqtrain Sequential training algorithm.% som_batchtrain Batch training algorithm.% Copyright (c) 1999-2000 by the SOM toolbox programming team.% http://www.cis.hut.fi/projects/somtoolbox/% Version 2.0beta juuso 111199%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check arguments% Dif isstruct(D) data_name = D.name; comp_names = D.comp_names; comp_norm = D.comp_norm; D = D.data;else data_name = inputname(1); sDummy = som_data_struct(D(1,:)); comp_names = sDummy.comp_names; comp_norm = sDummy.comp_norm;end[dlen dim] = size(D);% defaultsmapsize = '';sM = som_map_struct(dim); sTopol = sM.topol;munits = prod(sTopol.msize); % should be zeromask = sM.mask; name = sM.name; neigh = sM.neigh; tracking = 1;algorithm = 'batch'; initalg = 'lininit';training = 'default'; % varargini=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, % argument IDs case 'mask', i=i+1; mask = varargin{i}; case 'munits', i=i+1; munits = varargin{i}; case 'msize', i=i+1; sTopol.msize = varargin{i}; munits = prod(sTopol.msize); case 'mapsize', i=i+1; mapsize = varargin{i}; case 'name', i=i+1; name = varargin{i}; case 'comp_names', i=i+1; comp_names = varargin{i}; case 'lattice', i=i+1; sTopol.lattice = varargin{i}; case 'shape', i=i+1; sTopol.shape = varargin{i}; case {'topol','som_topol','sTopol'}, i=i+1; sTopol = varargin{i}; munits = prod(sTopol.msize); case 'neigh', i=i+1; neigh = varargin{i}; case 'tracking', i=i+1; tracking = varargin{i}; case 'algorithm', i=i+1; algorithm = varargin{i}; case 'init', i=i+1; initalg = varargin{i}; case 'training', i=i+1; training = varargin{i}; % unambiguous values case {'hexa','rect'}, sTopol.lattice = varargin{i}; case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; case {'gaussian','cutgauss','ep','bubble'}, neigh = varargin{i}; case {'seq','batch','sompak'}, algorithm = varargin{i}; case {'small','normal','big'}, mapsize = varargin{i}; case {'randinit','lininit'}, initalg = varargin{i}; case {'short','default','long'}, training = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}(1).type, case 'som_topol', sTopol = varargin{i}; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_make) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% make the map struct% map sizeif isempty(sTopol.msize) | ~prod(sTopol.msize), if tracking>0, fprintf(1,'Determining map size...\n'); end if ~munits, sTemp = som_topol_struct('dlen',dlen); munits = prod(sTemp.msize); switch mapsize, case 'small', munits = max(9,ceil(munits/4)); case 'big', munits = munits*4; otherwise % nil end end sTemp = som_topol_struct('data',D,'munits',munits); sTopol.msize = sTemp.msize; if tracking>0, fprintf(1,' map size [%d, %d]\n',sTopol.msize(1), sTopol.msize(2)); endend% map structsMap = som_map_struct(dim,sTopol,neigh,'mask',mask,'name',name, ... 'comp_names', comp_names, 'comp_norm', comp_norm); % functionif strcmp(algorithm,'sompak'), algorithm = 'seq'; func = 'sompak';else func = algorithm;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% initializationif tracking>0, fprintf(1,'Initialization...\n'); endswitch initalg, case 'randinit', sMap = som_randinit(D, sMap); case 'lininit', sMap = som_lininit(D, sMap); endsMap.trainhist(1) = som_set(sMap.trainhist(1),'data_name',data_name);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% trainingif tracking>0, fprintf(1,'Training using %s algorithm...\n',algorithm); end% rough trainif tracking>0, fprintf(1,'Rough training phase...\n'); endsTrain = som_train_struct(sMap,'dlen',dlen,'algorithm',algorithm,'phase','rough');sTrain = som_set(sTrain,'data_name',data_name);if isnumeric(training), sTrain.trainlen = training(1); else switch training, case 'short', sTrain.trainlen = max(1,sTrain.trainlen/4); case 'long', sTrain.trainlen = sTrain.trainlen*4; endendswitch func, case 'seq', sMap = som_seqtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); case 'sompak', sMap = som_sompaktrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); case 'batch', sMap = som_batchtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask);end% finetuneif tracking>0, fprintf(1,'Finetuning phase...\n'); endsTrain = som_train_struct(sMap,'dlen',dlen,'phase','finetune');sTrain = som_set(sTrain,'data_name',data_name,'algorithm',algorithm);if isnumeric(training), sTrain.trainlen = training(2); else switch training, case 'short', sTrain.trainlen = max(1,sTrain.trainlen/4); case 'long', sTrain.trainlen = sTrain.trainlen*4; endendswitch func, case 'seq', sMap = som_seqtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); case 'sompak', sMap = som_sompaktrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); case 'batch', sMap = som_batchtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask);end% qualityif tracking>0, [mqe,tge] = som_quality(sMap,D); fprintf(1,'Final quantization error: %5.3f\n',mqe) fprintf(1,'Final topographic error: %5.3f\n',tge)end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -