📄 lwgraph.h
字号:
// file lwgraph.h
// linked adjacency list representation of weighted graphs
// initial version
#ifndef LinkedWGraph_
#define LinkedWGraph_
#include "lwdgraph.h"
#include "edgenode.h"
#include "vnode.h"
#include "minheap.h"
#include "modheap.h"
#include "unfind.h"
template<class T>
class LinkedWGraph : public LinkedWDigraph<T>
{
public:
LinkedWGraph(int Vertices = 10)
: LinkedWDigraph<T> (Vertices)
{
}
LinkedWGraph<T>& Add(int i, int j, const T& w);
LinkedWGraph<T>& Delete(int i, int j);
int Degree(int i) const
{
return InDegree(i);
}
int OutDegree(int i) const
{
return InDegree(i);
}
bool Connected();
int LabelComponents(int L[]);
bool Kruskal(EdgeNode<T> t[]);
bool Prim(EdgeNode<T> t[]);
protected:
LinkedWGraph<T>& AddNoCheck(int i, int j, const T& w);
};
template<class T>
LinkedWGraph<T>& LinkedWGraph<T>::Add(int i, int j, const T& w)
{// Add edge (i,j).
if (i < 1 || j < 1 || i > n || j > n || i == j || Exist(i, j))
throw BadInput();
return AddNoCheck(i, j, w);
}
template<class T>
LinkedWGraph<T>& LinkedWGraph<T>::AddNoCheck(int i, int j, const T& w)
{// Add edge (i,j).
GraphNode<T> x;
x.vertex = j; x.weight = w;
h[i].Insert(0,x); // put on i's list
x.vertex = i;
try
{
h[j].Insert(0,x);
}
catch (...) // insert failed
{// undo previous insert
x.vertex = j; h[i].Delete(x);
throw;
} // throw same exception
e++;
return *this;
}
template<class T>
LinkedWGraph<T>& LinkedWGraph<T>::Delete(int i, int j)
{// Delete edge (i,j).
LinkedWDigraph<T>::Delete(i,j);
LinkedWDigraph<T>::Delete(j,i);
e++; // compensate
return *this;
}
template<class T>
bool LinkedWGraph<T>::Connected()
{// Return true iff graph is connected.
int n = Vertices();
// set all vertices as not reached
int *reach = new int [n+1];
for (int i = 1; i <= n; i++)
reach[i] = 0;
// mark vertices reachable from vertex 1
DFS(1, reach, 1);
// check if all vertices marked
for (i = 1; i <= n; i++)
if (!reach[i])
return false;
return true;
}
template<class T>
int LinkedWGraph<T>::LabelComponents(int L[])
{// Label the components of the graph.
// Return the number of components and set L[1:n]
// to represent a labeling of vertices by component.
int n = Vertices();
// assign all vertices to no component
for (int i = 1; i <= n; i++)
L[i] = 0;
int label = 0; // ID of last component
// identify components
for (i = 1; i <= n; i++)
if (!L[i])
{// unreached vertex
// vertex i is in a new component
label++;
BFS(i, L, label);
} // mark new component
return label;
}
template<class T>
bool LinkedWGraph<T>::Kruskal(EdgeNode<T> t[])
{// Find a min cost spanning tree using Kruskal's
// method. Return false if not connected. If
// connected, return min spanning tree in t[0:n-2].
int n = Vertices();
int e = Edges();
// set up array of network edges
InitializePos(); // graph iterator
EdgeNode<T> *E = new EdgeNode<T> [e+1];
int k = 0; // cursor for E
for (int i = 1; i <= n; i++)
{
// get all edges incident to i
int j;
T c;
First(i, j, c);
while (j)
{ // j is adjacent from i
if (i < j) {// add edge to E
E[++k].weight = c;
E[k].u = i;
E[k].v = j;
}
Next(i, j, c);
}
}
// put edges in min heap
MinHeap<EdgeNode<T> > H(1);
H.Initialize(E, e, e);
UnionFind U(n); // union/find structure
// extract edges in cost order and select/reject
k = 0; // use as cursor for t now
while (e && k < n - 1)
{
// spanning tree not complete &
// edges remain
EdgeNode<T> x;
H.DeleteMin(x); // min cost edge
e--;
int a = U.Find(x.u);
int b = U.Find(x.v);
if (a != b)
{// select edge
t[k++] = x;
U.Union(a,b);
}
}
DeactivatePos();
H.Deactivate();
return (k == n - 1);
}
template<class T>
bool LinkedWGraph<T>::Prim(EdgeNode<T> t[])
{// Find a min cost spanning tree using Prim's
// method. Return false if not connected. If
// connected, return min spanning tree in t[0:n-2].
int n = Vertices();
bool *selected = new bool [n+1];
VertexNode1<T> *VN1 = new VertexNode1<T> [n+1];
// start with vertex 1 in tree
// initilize distance and modified min heap
// of next candidates
VN1[1].distance = 0;
for (int i = 2; i <= n; i++)
{
VN1[i].distance = -1;
selected[i] = false;
}
InitializePos(); // graph iterator
// update distance for vertices adjacent to 1
// and insert these vertices into a modified
// min heap
int v;
T w; // edge weight
VertexNode2<T> VN2; // used for modified min heap
ModifiedMinHeap<T> *H;
H = new ModifiedMinHeap<T> (n);
First(1,v,w);
while (v)
{
VN1[v].distance = w;
VN1[v].nbr = 1;
VN2.ID = v;
VN2.distance = w;
H->Insert(VN2);
Next(1,v,w);
}
// select n-1 edges for spanning tree
for (i = 0; i < n - 1; i++)
{
// get nearest unselected vertex
try
{
H->DeleteMin(VN2);
}
catch (OutOfBounds)
{// no next vertex
return false;
}
// select VN2.ID
EdgeNode<T> x;
int u = VN2.ID;
x.u = u;
x.v = VN1[u].nbr;
x.weight = VN1[u].distance;
t[i] = x;
selected[u] = true;
// update distances
First(u,v,w);
while (v)
{
// VN1[v].distance may have changed
if (!selected[v])
{
if (VN1[v].distance == -1)
{
// v not in min heap
VN1[v].distance = w;
VN1[v].nbr = u;
VN2.distance = w;
VN2.ID = v;
H->Insert(VN2);
}
else if (VN1[v].distance > w)
{
// v is in the min heap
VN1[v].distance = w;
VN1[v].nbr = u;
VN2.distance = w;
VN2.ID = v;
H->Decrease(VN2);
}
}
Next(u,v,w);
}
}
DeactivatePos();
delete [] VN1;
delete [] selected;
delete H;
return true;
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -