⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bst.h

📁 常用算法与数据结构原代码
💻 H
字号:
// bst.h
// unbalanced binary search trees
#ifndef BSTree_
#define BSTree_

#include "binary.h"
#include "xcept.h"

template<class E, class K>
class BSTree : public BinaryTree<E> 
{
public:
	bool Search(const K& k, E& e) const;
	BSTree<E,K>& Insert(const E& e);
	BSTree<E,K>& InsertVisit(const E& e, void(*visit)(E& u));
	BSTree<E,K>& Delete(const K& k, E& e);
	BSTree<E,K>& DeleteMax(E& e);
	void Ascend()
	{
		InOutput();
	}
};

template<class E, class K>
bool BSTree<E,K>::Search(const K& k, E &e) const
{// Search for element that matches k.
	// pointer p starts at the root and moves through
	// the tree looking for an element with key k
	BinaryTreeNode<E> *p = root;
	while (p) // examine p->data
	{
		if (k < p->data) 
			p = p->LeftChild;
		else 
		{
			if (k > p->data) 
				p = p->RightChild;
			else 
			{// found element
				e = p->data;
				return true;
			}
		}
	}
	return false;
}

template<class E, class K>
BSTree<E,K>& BSTree<E,K>::Insert(const E& e)
{// Insert e if not duplicate.
	BinaryTreeNode<E> *p = root,  // search pointer
					  *pp = 0;    // parent of p
	// find place to insert
	while (p) 
	{// examine p->data
		pp = p;
		// move p to a child
		if (e < p->data) 
			p = p->LeftChild;
		else 
		{
			if (e > p->data) 
				p = p->RightChild;
			else 
				throw BadInput(); // duplicate
		}
	}
	
	// get a node for e and attach to pp
	BinaryTreeNode<E> *r = new BinaryTreeNode<E> (e);
	if (root) 
	{// tree not empty
		if (e < pp->data) 
			pp->LeftChild = r;
		else 
			pp->RightChild = r;
	}
	else // insertion into empty tree
        root = r;
	
	return *this;
}

template<class E, class K>
BSTree<E,K>& BSTree<E,K>::InsertVisit(const E& e, void(*visit)(E& u))
{// Insert e if not duplicate.
	// Visit e if duplicate.
	
	// search for a matching element
	BinaryTreeNode<E> *p = root, // search pointer
		*pp = 0;   // parent of p
	while (p) 
	{// examine p->data
		pp = p;
		if (e < p->data) 
			p = p->LeftChild;
		else 
		{
			if (e > p->data) 
				p = p->RightChild;
			else 
			{// duplicate
				visit(p->data);
				return *this;
			}
		}
	}
	
	// not a duplicate
	// get a node for e and attach to pp
	BinaryTreeNode<E> *r = new BinaryTreeNode<E> (e);
	if (root) 
	{// tree not empty
		if (e < pp->data) 
			pp->LeftChild = r;
		else 
			pp->RightChild = r;
	}
	else // insertion into empty tree
        root = r;
	
	return *this;
}

template<class E, class K>
BSTree<E,K>& BSTree<E,K>::Delete(const K& k, E& e)
{// Delete element with key k and put it in e.
	
	// set p to point to node with key k
	BinaryTreeNode<E> *p = root, // search pointer
					  *pp = 0;   // parent of p
	while (p && p->data != k)
	{// move to a child of p
		pp = p;
		if (k < p->data)
			p = p->LeftChild;
		else 
			p = p->RightChild;
	}
	if (!p) 
		throw BadInput(); // no element with key k
	
	e = p->data;  // save element to delete
	
	// restructure tree
	// handle case when p has two children
	if (p->LeftChild && p->RightChild)
	{// two children
		// convert to zero or one child case
		// find largest element in left subtree of p
		BinaryTreeNode<E> *s = p->LeftChild,
						  *ps = p;  // parent of s
		while (s->RightChild) 
		{// move to larger element
			ps = s;
			s = s->RightChild;
		}
		
		// move largest from s to p
		p->data = s->data;
		p = s;
		pp = ps;
	}
	
	// p has at most one child
	// save child pointer in c
	BinaryTreeNode<E> *c;
	if (p->LeftChild) c = p->LeftChild;
	else c = p->RightChild;
	
	// delete p
	if (p == root) 
		root = c;
	else 
	{// is p left or right child of pp?
		if (p == pp->LeftChild)
			pp->LeftChild = c;
		else 
			pp->RightChild = c;
	}
	delete p;
	
	return *this;
}

template<class E, class K>
BSTree<E,K>& BSTree<E,K>::DeleteMax(E& e)
{// Delete element with max key and put it in e.
	// Throw OutOfBounds exception if tree is empty.
	
	if (!root) 
		throw OutOfBounds();  // empty tree
	
	// set p to point to node with max key
	BinaryTreeNode<E> *p = root, // search pointer
				   	  *pp = 0;   // parent of p
	// follow right child pointers to max element
	while (p->RightChild)
	{// move to a child of p
		pp = p;
		p = p->RightChild;
	}
	e = p->data;  // save max element
	// delete p from tree
	// p has at most one child
	if (p == root) 
		root = p->LeftChild;
	else 
		pp->RightChild = p->LeftChild;
	delete p;
	return *this;
}

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -