📄 iavl.h
字号:
// indexed AVL tree
#ifndef IndexedAVLtree_
#define IndexedAVLtree_
#include "iavlnode.h"
#include "xcept.h"
#include "stack.h"
template<class E, class K>
class IndexedAVLtree
{
public:
IndexedAVLtree()
{
root = 0;
}
~IndexedAVLtree()
{
Erase(root);
}
bool Search(const K& k, E& e) const;
bool IndexedSearch(int k, E& e) const;
IndexedAVLtree<E,K>& Insert(const E& e);
IndexedAVLtree<E,K>& Delete(const K& k, E& e);
IndexedAVLtree<E,K>& IndexedDelete(int k, E& e);
void Ascend()
{
InOutput(root);
cout << endl;
}
void PostOut()
{
PostOutput(root);
cout << endl;
}
protected:
IAVLNode<E,K> *root; // root node
void Reset(int r, const K& k);
void Erase(IAVLNode<E,K> *t);
void InOutput(IAVLNode<E,K> *t);
void PostOutput(IAVLNode<E,K> *t);
void FixBF(IAVLNode<E,K> *, IAVLNode<E,K>*, const E&);
void RRrotate(IAVLNode<E,K> *, IAVLNode<E,K>*, IAVLNode<E,K> *);
void LLrotate(IAVLNode<E,K> *, IAVLNode<E,K>*, IAVLNode<E,K> *);
void RLrotate(IAVLNode<E,K> *, IAVLNode<E,K>*, IAVLNode<E,K> *);
void LRrotate(IAVLNode<E,K> *, IAVLNode<E,K>*, IAVLNode<E,K> *);
};
template<class E, class K>
void IndexedAVLtree<E,K>::Erase(IAVLNode<E,K> *t)
{// Delete all nodes in AVL tree with root t.
// Use a postorder traversal.
if (t)
{
Erase(t->LeftChild);
Erase(t->RightChild);
delete t;
}
}
template<class E, class K>
void IndexedAVLtree<E,K>::FixBF(IAVLNode<E,K> *q, IAVLNode<E,K> *r, const E &e)
{// Balance factors from q to r were originally 0.
// They need to be changed to +1 or -1.
// Use e to find path from q to r.
while (q != r)
{
if (e < q->data)
{
// height of left subtree has increased
q->bf = 1;
q = q->LeftChild;
}
else
{
// height of right subtree has increased
q->bf = -1;
q = q->RightChild;
}
}
}
template<class E, class K>
void IndexedAVLtree<E,K>::LLrotate(IAVLNode<E,K> *PA, IAVLNode<E,K> *A, IAVLNode<E,K> *B)
{// LL rotation around A. PA is parent of A
// and B left child of A.
// restructure subtree at A
A->LeftChild = B->RightChild;
B->RightChild = A;
A->LeftSize -= B->LeftSize;
if (PA) // A is not the root
{
if (A == PA->LeftChild)
PA->LeftChild = B;
else
PA->RightChild = B;
}
else root = B;
// set balance factors
A->bf = B->bf = 0;
}
template<class E, class K>
void IndexedAVLtree<E,K>::RRrotate(IAVLNode<E,K> *PA, IAVLNode<E,K> *A, IAVLNode<E,K> *B)
{// RR rotation around A. PA is parent of A
// and B right child of A.
// restructure subtree at A
A->RightChild = B->LeftChild;
B->LeftChild = A;
B->LeftSize += A->LeftSize;
if (PA) // A is not the root
{
if (A == PA->LeftChild)
PA->LeftChild = B;
else
PA->RightChild = B;
}
else root = B;
// set balance factors
A->bf = B->bf = 0;
}
template<class E, class K>
void IndexedAVLtree<E,K>::LRrotate(IAVLNode<E,K> *PA, IAVLNode<E,K> *A, IAVLNode<E,K> *B)
{// LR rotation around A. PA is parent of A
// and B left child of A.
IAVLNode<E,K> *C = B->RightChild;
// restructure subtree at A
A->LeftChild = C->RightChild;
B->RightChild = C->LeftChild;
C->LeftChild = B;
C->RightChild = A;
A->LeftSize -= B->LeftSize + C->LeftSize;
C->LeftSize += B->LeftSize;
if (PA) // A is not the root
{
if (A == PA->LeftChild)
PA->LeftChild = C;
else PA->RightChild = C;
}
else root = C;
// set balance factors
int b = C->bf;
if (b == 1)
{
B->bf = 0;
A->bf = -1;
}
else if (b)
{
B->bf = 1;
A->bf = 0;
}
else // b = 0
B->bf = A->bf = 0;
C->bf = 0;
}
template<class E, class K>
void IndexedAVLtree<E,K>::RLrotate(IAVLNode<E,K> *PA, IAVLNode<E,K> *A, IAVLNode<E,K> *B)
{// RL rotation around A. PA is parent of A
// and B left child of A.
IAVLNode<E,K> *C = B->LeftChild;
// restructure subtree at A
A->RightChild = C->LeftChild;
B->LeftChild = C->RightChild;
C->LeftChild = A;
C->RightChild = B;
B->LeftSize -= C->LeftSize;
C->LeftSize += A->LeftSize;
if (PA) // A is not the root
{
if (A == PA->LeftChild)
PA->LeftChild = C;
else PA->RightChild = C;
}
else root = C;
// set balance factors
int b = C->bf;
if (b == 1)
{
B->bf = -1;
A->bf = 0;
}
else if (b)
{
B->bf = 0;
A->bf = 1;
}
else // b = 0
B->bf = A->bf = 0;
C->bf = 0;
}
template<class E, class K>
bool IndexedAVLtree<E,K>::Search(const K& k, E &e) const
{// Search for element that matches k.
// pointer p starts at the root and moves through
// the tree looking for an element with key k
IAVLNode<E,K> *p = root;
while (p) // examine p->data
{
if (k < p->data)
p = p->LeftChild;
else if (k > p->data)
p = p->RightChild;
else
{// found element
e = p->data;
return true;
}
}
return false;
}
template<class E, class K>
bool IndexedAVLtree<E,K>::IndexedSearch(int k, E& e) const
{// Put the k'th element in e.
// Return false iff there is no k'th element
IAVLNode<E,K> *p = root;
while (p)
{
if (k < p->LeftSize) p = p->LeftChild;
else if (k > p->LeftSize)
{
k -= p->LeftSize;
p = p->RightChild;
}
else
{ e = p->data;
return true;
}
}
return false;
}
template<class E, class K>
IndexedAVLtree<E,K>& IndexedAVLtree<E,K>::Insert(const E& e)
{// Insert e if not duplicate.
IAVLNode<E,K> *p = root, // search pointer
*pp = 0, // parent of p
*A = 0, // node with bf != 0
*PA; // parent of A
// find place to insert
// also record most recent node with bf != 0
// in A and its parent in PA
K k = e; // extract key
while (p)
{// examine p->data
if (p->bf)
{// new candidate for A node
A = p;
PA = pp;
}
pp = p;
// move p to a child
if (k < p->data)
{
// insert will be in left subtree of p
p->LeftSize++;
p = p->LeftChild;
}
else if (k > p->data)
p = p->RightChild;
else
{
Reset(-1,k); // reset LeftSize
throw BadInput();
} //duplicate
}
// get a node for e and attach to pp
IAVLNode<E,K> *r = new IAVLNode<E,K> (e);
if (root)
{// tree not empty
if (e < pp->data)
pp->LeftChild = r;
else
pp->RightChild = r;
}
else
{// insertion into empty tree
root = r;
return *this;
}
// see if we must rebalance or simply change
// balance factors
if (A) // possible rebalancing needed
{
if (A->bf < 0) // bf = -1 before insertion
{
if (e < A->data)
{// insertion in left subtree
// height of left subtree has increased by 1
// new bf of A is 0, no rebalancing
A->bf = 0;
// fix bf on path from A to r
FixBF(A->LeftChild,r,e);
}
else
{// insertion in right subtree
// bf of A is -2, rebalance
IAVLNode<E,K> *B = A->RightChild;
if (e > B->data)
{// RR case
FixBF(B->RightChild,r,e);
RRrotate(PA,A,B);
}
else
{// RL case
FixBF(B->LeftChild,r,e);
RLrotate(PA,A,B);
}
}
}
else // bf = +1 before insertion
{
if (e > A->data)
{// insertion in right subtree
// height of right subtree has increased by 1
// new bf of A is 0, no rebalancing
A->bf = 0;
// fix bf on path from A to r
FixBF(A->RightChild,r,e);
}
else
{// insertion in left subtree
// bf of A is +2, rebalance
IAVLNode<E,K> *B = A->LeftChild;
if (e < B->data)
{// LL case
FixBF(B->LeftChild,r,e);
LLrotate(PA,A,B);
}
else
{// LR case
FixBF(B->RightChild,r,e);
LRrotate(PA,A,B);
}
}
}
}
else // A is NULL, no rebalancing
FixBF(root,r,e);
return *this;
}
template<class E, class K>
void IndexedAVLtree<E,K>::Reset(int r, const K& k)
{// Add r to LeftSize on path to k.
IAVLNode<E,K> *p = root;
while (p)
{
if (k < p->data)
{
p->LeftSize += r;
p = p->LeftChild;
}
else if (k > p->data)
p = p->RightChild;
else
return;
}
}
template<class E, class K>
IndexedAVLtree<E,K>& IndexedAVLtree<E,K>::Delete(const K& k, E& e)
{// Delete element with key k and put it in e.
// Throw BadInput exception if there is no element
// with key k.
// define a stack to hold path taken from root
// to physically deleted node
// we will not run out of stack space unless
// the number of elements is much more than 2^60
Stack<IAVLNode<E,K>*> S(100);
// set p to point to node with key k
IAVLNode<E,K> *p = root; // search pointer
while (p && p->data != k)
{// move to a child of p
S.Add(p);
if (k < p->data)
{
p->LeftSize--;
p = p->LeftChild;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -