📄 dirichlet_poisson.h
字号:
#include <flens/flens.h>#include <poisson_solver/flens_impl.h>#include <fftw3.h>namespace flens {//-- optimization --------------------------------------------------------------template <typename VB, typename MA, typename VX, typename VR>voidresidual(const Vector<VB> &b, const Matrix<MA> &A, const Vector<VX> &x, Vector<VR> &r){ typedef typename VR::ElementType T; copy(b.impl(), r.impl()); mv(NoTrans, T(-1), A.impl(), x.impl(), T(1), r.impl());}// r = b -A*xtemplate <typename VB, typename MA, typename VX, typename VR>voidcopy(const VectorClosure<OpSub, VB, VectorClosure<OpMult, MA, VX> > &b_Ax, Vector<VR> &r){ residual(b_Ax.left(), b_Ax.right().left(), b_Ax.right().right(), r.impl());}//== problem set ===============================================================//-- Dirichlet Poisson 1D (low level) ------------------------------------------// problem 1: -u''(x) = pi^2*sin(pi*x), u(0) = 0, u(1) = 0// solution: u(x) = sin(pi*x)template <typename F, typename U, typename SOL>voidproblem1(int rh, DenseVector<F> &f, DenseVector<U> &u, DenseVector<SOL> &sol){ int N = rh-1; double h = 1./rh; for (int i=1; i<=N; ++i) { double x = h*i; f(i) = sin(M_PI*x)*M_PI*M_PI; sol(i) = sin(M_PI*x); }}//-- Dirichlet Poisson 1D ------------------------------------------------------// problem 1: -u''(x) = pi^2*sin(pi*x), u(0) = 0, u(1) = 0// solution: u(x) = sin(pi*x)voidproblem1(GridVector1D &f, GridVector1D &u, GridVector1D &sol){ double h = 1./f.rh; GridVector1D::Grid &F = f.grid; GridVector1D::Grid &SOL = sol.grid; int i0 = F.firstIndex(), i1 = F.lastIndex(); for (int i=i0; i<=i1; ++i) { double x = h*i; F(i) = sin(M_PI*x)*M_PI*M_PI; SOL(i) = sin(M_PI*x); }}// problem 2: -u''(x) = 0, u(0) = 1, u(1) = 1// solution: u(x) = 1voidproblem2(GridVector1D &f, GridVector1D &u, GridVector1D &sol){ GridVector1D::Grid &F = f.grid; GridVector1D::Grid &SOL = sol.grid; GridVector1D::Grid &U = u.grid; int i0 = F.firstIndex(), i1 = F.lastIndex(); F = 0; SOL = 1; U(i0) = U(i1) = 1;}// problem 3: -u''(x) = 0, u(0) = 0, u(1) = 1// solution: u(x) = xvoidproblem3(GridVector1D &f, GridVector1D &u, GridVector1D &sol){ double h = 1./f.rh; GridVector1D::Grid &F = f.grid; GridVector1D::Grid &SOL = sol.grid; GridVector1D::Grid &U = u.grid; int i0 = U.firstIndex(), i1 = U.lastIndex(); U(i0) = U(i1) = 1; F = 0; U(i0) = 0; U(i1) = 1; for (int i=i0; i<=i1; ++i) { double x = h*i; SOL(i) = x; }}// problem 4: -u''(x) = 0, u(0) = 0, u(1) = 0// solution: u(x) = 0voidproblem4(GridVector1D &f, GridVector1D &u, GridVector1D &sol){ GridVector1D::Grid &F = f.grid; GridVector1D::Grid &SOL = sol.grid; GridVector1D::Grid &U = u.grid; int i0 = U.firstIndex(), i1 = U.lastIndex(); F = 0; U(i0) = 0; U(i1) = 0; SOL = 0;}//-- Dirichlet Poisson 2D ------------------------------------------------------// problem 1: -u_xx -u_yy = 5*pi^2*sin(pi*x)*pi^2*sin(2*pi*y), BC: u = 0// solution: u(x) = sin(pi*x) * sin(2*pi*y)voidproblem1(GridVector2D &f, GridVector2D &u, GridVector2D &sol){ double h = 1./f.rh; GridVector2D::Grid &F = f.grid; GridVector2D::Grid &SOL = sol.grid; for (int i=F.firstRow(); i<=F.lastRow(); ++i) { for (int j=F.firstCol(); j<=F.lastCol(); ++j) { double x = h*i; double y = h*j; F(i,j) = 5*M_PI*M_PI * sin(M_PI*x) * sin(2*M_PI*y); SOL(i,j) = sin(M_PI*x) * sin(2*M_PI*y); } }}#ifdef USE_MPIvoidproblem1(DistributedGridVector2D &f, DistributedGridVector2D &u, DistributedGridVector2D &sol){ double h = 1./f.rh; DistributedGridVector2D::LocalGrid F = f.localGrid(); DistributedGridVector2D::LocalGrid SOL = sol.localGrid(); for (int i=F.firstRow(); i<=F.lastRow(); ++i) { for (int j=F.firstCol(); j<=F.lastCol(); ++j) { double x = (i+f.i0)*h; double y = (j+f.j0)*h; F(i,j) = 5*M_PI*M_PI * sin(M_PI*x) * sin(2*M_PI*y); SOL(i,j) = sin(M_PI*x) * sin(2*M_PI*y); } }}#endif // USE_MPI// problem 2: -u''(x) = 0, BC: u = 1// solution: u(x) = 1voidproblem2(GridVector2D &f, GridVector2D &u, GridVector2D &sol){ int N = f.rh-1; f.grid = 0; u.grid(0,_) = 1; u.grid(N+1,_) = 1; u.grid(_,0) = 1; u.grid(_,N+1) = 1; sol.grid = 1;}voidproblem2(StaggeredGridVector2D<false, false> &f, StaggeredGridVector2D<false, false> &u, StaggeredGridVector2D<false, false> &sol){ int N = f.rh-1; f.grid = 0; u.grid(0,_) = 1; u.grid(N+1,_) = 1; u.grid(_,0) = 1; u.grid(_,N+1) = 1; sol.grid = 1;}// problem 2: -u''(x) = 2x + 2y - 2, BC: u' = 0// solution: u(x) = x^2/2 - x^3/3 + y^2/2 - y^3/3 - 1/6voidproblem2(StaggeredGridVector2D<true, true> &f, StaggeredGridVector2D<true, true> &u, StaggeredGridVector2D<true, true> &sol){ double h = 1./f.rh; double dx = 0.5; double dy = 0.5; StaggeredGridVector2D<true, true>::Grid &F = f.grid; StaggeredGridVector2D<true, true>::Grid &SOL = sol.grid; for (int i=F.firstRow(); i<=F.lastRow(); ++i) { for (int j=F.firstCol(); j<=F.lastCol(); ++j) { double x = (i+dx)*h; double y = (j+dy)*h; F(i,j) = 2*x + 2*y - 2; SOL(i,j) = x*x/2 - x*x*x/3 + y*y/2 - y*y*y/3 - 1./6; } }}#ifdef USE_MPIvoidproblem2(DistributedGridVector2D &f, DistributedGridVector2D &u, DistributedGridVector2D &sol){ f.grid = 0; sol.grid = 1; MpiCart mpiCart = f.mpiCart; int m = f.m, n = f.n; if (mpiCart.row==0) { u.grid(0,_) = 1; } if (mpiCart.row==mpiCart.numRows-1) { u.grid(m+1,_) = 1; } if (mpiCart.col==0) { u.grid(_,0) = 1; } if (mpiCart.col==mpiCart.numCols-1) { u.grid(_,n+1) = 1; }}#endif // USE_MPI// problem 3: -u_xx -u_yy = 2*pi^2*sin(pi*x) * pi^2*sin(pi*y), BC: u = 0// solution: u(x) = sin(pi*x) * sin(pi*y)voidproblem3(GridVector2D &f, GridVector2D &u, GridVector2D &sol){ double h = 1./f.rh; GridVector2D::Grid &F = f.grid; GridVector2D::Grid &SOL = sol.grid; for (int i=F.firstRow(); i<=F.lastRow(); ++i) { for (int j=F.firstCol(); j<=F.lastCol(); ++j) { double x = h*i; double y = h*j; F(i,j) = 2*M_PI*M_PI * sin(M_PI*x) * sin(M_PI*y); SOL(i,j) = sin(M_PI*x) * sin(M_PI*y); } }}#ifdef USE_MPIvoidproblem3(DistributedGridVector2D &f, DistributedGridVector2D &u, DistributedGridVector2D &sol){ double h = 1./f.rh; DistributedGridVector2D::LocalGrid F = f.localGrid(); DistributedGridVector2D::LocalGrid SOL = sol.localGrid(); for (int i=F.firstRow(); i<=F.lastRow(); ++i) { for (int j=F.firstCol(); j<=F.lastCol(); ++j) { double x = (i+f.i0)*h; double y = (j+f.j0)*h; F(i,j) = 2*M_PI*M_PI * sin(M_PI*x) * sin(M_PI*y); SOL(i,j) = sin(M_PI*x) * sin(M_PI*y); } }}#endif // USE_MPI//== error statistic ===========================================================voiderrorStat(int it, const DirichletPoisson1D &A, const GridVector1D &f, const GridVector1D &u, const GridVector1D &solution){ if (it>=0) { std::cout.width(3); std::cout << it << ") | "; } GridVector1D r(f.rh), error(f.rh); r = f - A*u; error = solution - u; double rNormInf = normInf(r); double rNormL2 = normL2(r); double errorNormInf = normInf(error); double errorNormL2 = normL2(error); std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << rNormL2 << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << rNormInf << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << errorNormL2 << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << errorNormInf << " | " << std::endl;}voiderrorStat(int it, const DirichletPoisson2D &A, const GridVector2D &f, const GridVector2D &u, const GridVector2D &solution){ if (it>=0) { std::cout.width(3); std::cout << it << ") | "; } GridVector2D r(f.rh), error(f.rh); r = f - A*u; error = solution - u; double rNormInf = normInf(r); double rNormL2 = normL2(r); double errorNormInf = normInf(error); double errorNormL2 = normL2(error); std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << rNormL2 << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << rNormInf << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(18); std::cout << errorNormL2 << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(18); std::cout << errorNormInf << " | " << std::endl;}template <typename MatType, bool DirectionX, bool DirectionY>voiderrorStat(int it, const MatType &A, const StaggeredGridVector2D<DirectionX, DirectionY> &f, const StaggeredGridVector2D<DirectionX, DirectionY> &u, const StaggeredGridVector2D<DirectionX, DirectionY> &solution){ if (it>=0) { std::cout.width(3); std::cout << it << ") | "; } StaggeredGridVector2D<DirectionX, DirectionY> r(f.rh), error(f.rh); r = f - A*u; error = solution - u; double rNormInf = normInf(r); double rNormL2 = normL2(r); double errorNormInf = normInf(error); double errorNormL2 = normL2(error); std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << rNormL2 << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << rNormInf << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << errorNormL2 << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << errorNormInf << " | " << std::endl;}#ifdef USE_MPIvoiderrorStat(int it, const DirichletPoisson2D &A, const DistributedGridVector2D &f, const DistributedGridVector2D &u, const DistributedGridVector2D &solution){ MpiCart mpiCart = f.mpiCart; DistributedGridVector2D r(mpiCart, f.rh), error(mpiCart, f.rh); r = f - A*u; error = solution - u; double rNormInf = normInf(r); double rNormL2 = normL2(r); double errorNormInf = normInf(error); double errorNormL2 = normL2(error); if ((mpiCart.row==0) && (mpiCart.col==0)) { if (it>=0) { std::cout.width(3); std::cout << it << ") | "; } std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << rNormL2 << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << rNormInf << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << errorNormL2 << " | "; std::cout.precision(12); std::cout.setf(std::ios::fixed); std::cout.width(20); std::cout << errorNormInf << " | " << std::endl; }}#endif // USE_MPI} // namespace flens
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -