⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_ldpc2fold_ch_complex.c

📁 This a framework to test new ideas in transmission technology. Actual development is a LDPC-coder in
💻 C
字号:
/***************************************************************************   ldpc_2fold_ch_complex.c  -  2fold LDPC-code, but with a complex channel                            -------------------    begin                : 01 Sept 2003     authors              : Nicolae Chiurtu    emails               : Nicolae.Chiurtu@epfl.ch ***************************************************************************//***************************************************************************                                 Changes                                 ------- date - name - description 03/09/01 - Nicou - Begin 03/09/03 - ineiti - added complex channel 04/03/03 - ineiti - added short comment  **************************************************************************//*************************************************************************** *                                                                         * *   This program is free software; you can redistribute it and/or modify  * *   it under the terms of the GNU General Public License as published by  * *   the Free Software Foundation; either version 2 of the License, or     * *   (at your option) any later version.                                   * *                                                                         * ***************************************************************************/#include <stdlib.h>#include "spc.h"#include "std.h"#include "math.h"#include <fpu_control.h>#define DBG_LVL 0char desc[] ="Description:\n""As a further preparation to go over the air, this time we use a complex\n""channel. This allows us to be even more precise to the real thing.\n""The simulated chain is a 2x2 MIMO system, and the variance is increased\n""up to the point where we get errors. There should be no errors for\n""sigma < 0.09, and then the BER should be > 0.\n\n";// The number of experiments and variances#define no_var 12#define no_exp 2double getSigma(double);struct chain_t *test_chain, *test_chain_2;void *start_it( void *arg ) {  swr_sdb_id mid[2],src,block_complex;  swr_sdb_id split, tsd, rcd, mid_rx[2],encoder,decoder;  int sigma;  double a11_real, a11_imag, a12_real, a12_imag, a21_real, a21_imag, a22_real, a22_imag;  double total_errors;  int a, b;  int errors, total_info_bits;  double ber = 0.0;  double real_sigma;  int sigma_array[no_var] = {320, 640, 960, 1280, 1600, 1920, 			     2240, 2560, 2880, 3200, 3500, 3840};  block_t ch_est_ant1, ch_est_ant2;  SYMBOL_COMPLEX *ch_est_ant1_ptr, *ch_est_ant2_ptr;  // Division by zero and overflow  /* { *//*     fpu_control_t fpu_err = 0x37f - _FPU_MASK_ZM - _FPU_MASK_OM; *//*     _FPU_SETCW( fpu_err ); *//*   } */  PR( "Setting up main-chain\n" );   // This chain simulates a simple 2x2 MIMO without LDPC  test_chain = swr_chain_create(NEW_SPC_VAR( "random", src ),                                NEW_SPC_VAR( "test_data_send", tsd),                                NEW_SPC_VAR( "ldpc_encode_2fold", encoder),                                NEW_SPC( "mapper"),                                NEW_SPC_VAR( "split", split ),                                NEW_SPC_VAR( "chest_send", mid[ 0 ] ),                                NEW_SPC_VAR( "block_complex", block_complex),                                NEW_SPC_VAR( "chest_rcv", mid_rx[ 0 ] ),                                NEW_SPC_VAR( "ldpc_decode_2fold", decoder),                                NEW_SPC_VAR( "test_data_rcv", rcd ),                                CHAIN_END );  PR( "Setting up second chain\n" );  test_chain_2 = swr_chain_create( OLD_SPC_OUT( split, 1 ),                                   NEW_SPC_VAR( "chest_send", mid[ 1 ] ),                                   OLD_SPC_IN_OUT( block_complex, 1, 1 ),                                   NEW_SPC_VAR( "chest_rcv", mid_rx[ 1 ] ),                                   OLD_SPC_IN( decoder, 1),                                   CHAIN_END );  for ( a=0; a<2; a++ ){    swr_sdb_set_config_int( mid[ a ], "circ_ext", 0 );    swr_sdb_set_config_int( mid_rx[ a ], "circ_ext", 0 );  }  PR( "Chains are set up\n" );   //Config Amplitude  swr_sdb_set_config_int( mid[0], "amplitude", 32767 );  swr_sdb_set_config_int( mid[1], "amplitude", 32767 );  swr_sdb_set_config_int( block_complex, "precision", 14 );    swr_sdb_set_config_int( mid[1], "index", 1 );  swr_sdb_set_config_int( rcd, "mode", 1 );  swr_sdb_set_config_int( decoder, "chest1", mid_rx[0] );  swr_sdb_set_config_int( decoder, "chest2", mid_rx[1] );  swr_sdb_set_config_int( encoder, "ldpc_code_id", 1 );  swr_sdb_set_config_int( decoder, "ldpc_code_id", 1 );  swr_sdb_set_config_int( decoder, "iterations", 15 );  swr_sdb_set_config_int( decoder, "iterations_left", 1 );  swr_sdb_set_config_int( decoder, "iterations_right", 1 );  PR( "Connecting the test_data modules\n" );  swr_conn_add(tsd, 1,rcd, 1);    //swr_sdb_set_config_int( snk, "flag", 1 ); //dump    PR( "Sending first message\n" );    for (a = 0; a < no_var; a++ ) {        // setting the noise variance        sigma = sigma_array[a];    swr_sdb_set_config_double( block_complex, "sigma_1_real", sigma );    swr_sdb_set_config_double( block_complex, "sigma_1_imag", sigma );    swr_sdb_set_config_double( block_complex, "sigma_2_real", sigma );    swr_sdb_set_config_double( block_complex, "sigma_2_imag", sigma );    swr_sdb_set_config_int( block_complex, "size", 2000 );            total_errors = 0.0;    for (b = 0; b < no_exp; b++){      // setting the channel            a11_real = getSigma(1.0);      a12_real = getSigma(1.0);      a21_real = getSigma(1.0);      a22_real = getSigma(1.0);      a11_imag = getSigma(1.0);      a12_imag = getSigma(1.0);      a21_imag = getSigma(1.0);      a22_imag = getSigma(1.0);      //-0.541508 + i*-1.57244  -1.43718 + i*-0.790332; 2.10095 + i*2.10164  -0.0110254 + i*1.48566      // 375:-112i) h12(36:397i) h21(-385:61i) h22(-155:-317i/*       a11_real =-0.541508 ; *//*       a12_real = -1.43; *//*       a21_real = 2.1; *//*       a22_real = -0.01; *//*       a11_imag = -1.57; *//*       a12_imag = -0.79; *//*       a21_imag = 2.1; *//*       a22_imag = 1.48; */                  //PR( "**********************************");      //PR( "\nH = [  %g %g ; %g %g  ]\n",      //	  a11, a12, a21, a22 );            swr_sdb_set_config_double( block_complex, "h11_real", a11_real );      swr_sdb_set_config_double( block_complex, "h12_real", a12_real );      swr_sdb_set_config_double( block_complex, "h21_real", a21_real );      swr_sdb_set_config_double( block_complex, "h22_real", a22_real );      swr_sdb_set_config_double( block_complex, "h11_imag", a11_imag );      swr_sdb_set_config_double( block_complex, "h12_imag", a12_imag );      swr_sdb_set_config_double( block_complex, "h21_imag", a21_imag );      swr_sdb_set_config_double( block_complex, "h22_imag", a22_imag );            // PR( "\nH = [  %g + i*%g  %g + i*%g; %g + i*%g  %g + i*%g ]\n",      // a11_real, a11_imag, a12_real, a12_imag, a21_real, a21_imag, a22_real, a22_imag );      // here we print the scaled channel and variance      // to be compared with the one we estimate ( printed in ldpc_decode.c)      PR_DBG( 4, "a11(%g:%gi) a12(%g:%gi) a21(%g:%gi) a22(%g:%gi) var1(%g) var2(%g)\n",	      floor(a11_real*327.67),  floor(a11_imag*327.67), floor(a12_real*327.67), floor(a12_imag*327.67),	      floor(a21_real*327.67), floor(a21_imag*327.67),  floor(a22_real*327.67), floor(a22_imag*327.67),	      (double) pow (sigma*0.01,2),  (double) pow (sigma*0.01,2));            swr_sdb_set_config_int( mid_rx[0], "num_of_antennas", 2);            swr_sdb_set_config_int( mid_rx[1], "num_of_antennas", 2);            swr_sdb_send_msg( src, SUBS_MSG_USER, NULL, -1 );            //PR( "Total data: %i, Errors: %i\n",      //  swr_sdb_get_stats_int( rcd, "total" ),      //  swr_sdb_get_stats_int( rcd, "error" ) );            total_info_bits = swr_sdb_get_stats_int( rcd, "total" );      errors = swr_sdb_get_stats_int( rcd, "error" );            total_errors += errors;      ch_est_ant1 = swr_sdb_get_stats_block( mid_rx[0], "channel" );      ch_est_ant2 = swr_sdb_get_stats_block( mid_rx[1], "channel" );            ch_est_ant1_ptr = ch_est_ant1.data;      ch_est_ant2_ptr = ch_est_ant2.data;            //PR("Noise Variance ant 1 = [%i], ant 2  = [%i] \n",      // swr_sdb_get_stats_int( mid_rx[0], "noise_var_real"),       // swr_sdb_get_stats_int( mid_rx[1], "noise_var_real"));          } // for number experiments        ber = (double) total_errors / (no_exp * total_info_bits);    real_sigma = (double) sigma / 32767;        PR("Sigma = %g, BER = %g\n", real_sigma, ber);      } // for the number of variances    //  swr_chain_destroy( test_chain );    return 0;}swr_spc_id_t spm_id;struct thread start;/** * This function is called upon "insmod" and is used to register the * different parts of the module to the SPM. */int um_module_init(void) {  PR_CL( desc );  test_chain = NULL;  if ( swr_thread_init( &start, start_it, NULL ) < 0 )    goto first_no_stack;  return 0;first_no_stack:  PR_DBG( 0, "Couldn't allocate stack\n" );  return -1;}void um_module_exit( void ) {  swr_thread_free( &start, NULL );  swr_chain_destroy( test_chain_2 );  swr_chain_destroy( test_chain );}double getSigma( double amplitude ) {  unsigned short x[3];  double u, v, w, alpha;  x[0] = (unsigned short)((get_time_usec()>>00)&0xffff);  x[1] = (unsigned short)((get_time_usec()>>16)&0xffff);  x[2] = (unsigned short)((get_time_usec()>>00)&0xffff);  do {    u = 2*erand48(x)-1;    v = 2*erand48(x)-1;    w = u*u + v*v;  } while (w>=1);  alpha = sqrt( -2 * log(w)/w);  return alpha * u * amplitude;}module_init( um_module_init );module_exit( um_module_exit );

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -