📄 make_symbols.m
字号:
function [ SYMBOLS ] = make_symbols(Lh)%% MAKE_SYMBOLS: % This function returns a table containing the mapping % from state numbers to symbols. The table is contained% in a matrix, and the layout is:%% - -% | Symbols for state 1 |% | Symbols for state 2 |% :% :% | Symbols for state M |% - -%% Where M is the total number of states, and can be calculated % as: 2^(Lh+1). Lh is the length of the estimated impulse% response, as found in the mf-routine. In the symbols for% a statenumber the order is as:%% I(n-1) I(n-2) I(n-3) ... I(n-Lh)%% Each of the symbols belong to { 1 , -1 , j , -j }.%% SYNTAX: [SYMBOLS] = make_symbols(Lh)%% INPUT: Lh: Length of the estimated impulse resonse.%% OUTPUT: SYMBOLS: The table of symbols corresponding the the state-% numbers, as described above.%% SUB_FUNC: None%% WARNINGS: None%% TEST(S): Compared result against expected values.%% AUTOR: Jan H. Mikkelsen / Arne Norre Ekstr鴐% EMAIL: hmi@kom.auc.dk / aneks@kom.auc.dk%% $Id: make_symbols.m,v 1.6 1997/09/22 11:38:57 aneks Exp $% THIS CODE CANNOT HANDLE Lh=1 or Lh>4.%if Lh==1, error('GSMsim-Error: Lh is constrained to be in the interval [1:4].');elseif Lh > 4, error('GSMsim-Error: Lh is constrained to be in the interval [1:4].')end% make initiating symbols%SYMBOLS=[ 1; j; -1 ; -j];% for n=1:Lh-1 SYMBOLS=[[ SYMBOLS(:,1)*j , SYMBOLS ] ; [ SYMBOLS(:,1)*(-j) , SYMBOLS ]];end%% NOW WE NEED TO ASSURE THAT THE STATE RELATED TO THE NUMBER ONE% IS COMPLEX. THIS IS REQUIRED BY THE IMPLEMENTATION OF THE VITERBI % ALGORITHM.%if isreal(SYMBOLS(1,1)), SYMBOLS=flipud(SYMBOLS);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -