⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sym_misc.h

📁 内核linux2.4.20,可跟rtlinux3.2打补丁 组成实时linux系统,编译内核
💻 H
字号:
/* * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family  * of PCI-SCSI IO processors. * * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr> * * This driver is derived from the Linux sym53c8xx driver. * Copyright (C) 1998-2000  Gerard Roudier * * The sym53c8xx driver is derived from the ncr53c8xx driver that had been  * a port of the FreeBSD ncr driver to Linux-1.2.13. * * The original ncr driver has been written for 386bsd and FreeBSD by *         Wolfgang Stanglmeier        <wolf@cologne.de> *         Stefan Esser                <se@mi.Uni-Koeln.de> * Copyright (C) 1994  Wolfgang Stanglmeier * * Other major contributions: * * NVRAM detection and reading. * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> * *----------------------------------------------------------------------------- * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. The name of the author may not be used to endorse or promote products *    derived from this software without specific prior written permission. * * Where this Software is combined with software released under the terms of  * the GNU Public License ("GPL") and the terms of the GPL would require the  * combined work to also be released under the terms of the GPL, the terms * and conditions of this License will apply in addition to those of the * GPL with the exception of any terms or conditions of this License that * conflict with, or are expressly prohibited by, the GPL. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */#ifndef SYM_MISC_H#define SYM_MISC_H/* *  A 'read barrier' flushes any data that have been prefetched  *  by the processor due to out of order execution. Such a barrier  *  must notably be inserted prior to looking at data that have  *  been DMAed, assuming that program does memory READs in proper  *  order and that the device ensured proper ordering of WRITEs. * *  A 'write barrier' prevents any previous WRITEs to pass further  *  WRITEs. Such barriers must be inserted each time another agent  *  relies on ordering of WRITEs. * *  Note that, due to posting of PCI memory writes, we also must  *  insert dummy PCI read transactions when some ordering involving  *  both directions over the PCI does matter. PCI transactions are  *  fully ordered in each direction. * *  IA32 processors insert implicit barriers when the processor  *  accesses unchacheable either for reading or writing, and  *  donnot reorder WRITEs. As a result, some 'read barriers' can  *  be avoided (following access to uncacheable), and 'write  *  barriers' should be useless (preventing compiler optimizations  *  should be enough). */#if	defined	__i386__#define __READ_BARRIER()	\		__asm__ volatile("lock; addl $0,0(%%esp)": : :"memory")#define __WRITE_BARRIER()	__asm__ volatile ("": : :"memory")#elif	defined	__powerpc__#define __READ_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")#define __WRITE_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")#elif	defined	__ia64__#define __READ_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")#define __WRITE_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")#elif	defined	__alpha__#define __READ_BARRIER()	__asm__ volatile("mb": : :"memory")#define __WRITE_BARRIER()	__asm__ volatile("mb": : :"memory")#else#define __READ_BARRIER()	mb()#define __WRITE_BARRIER()	mb()#endif#ifndef MEMORY_READ_BARRIER#define MEMORY_READ_BARRIER()	__READ_BARRIER()#endif#ifndef MEMORY_WRITE_BARRIER#define MEMORY_WRITE_BARRIER()	__WRITE_BARRIER()#endif/* *  A la VMS/CAM-3 queue management. */typedef struct sym_quehead {	struct sym_quehead *flink;	/* Forward  pointer */	struct sym_quehead *blink;	/* Backward pointer */} SYM_QUEHEAD;#define sym_que_init(ptr) do { \	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \} while (0)static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head){	return (head->flink == head) ? 0 : head->flink;}static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head){	return (head->blink == head) ? 0 : head->blink;}static __inline void __sym_que_add(struct sym_quehead * new,	struct sym_quehead * blink,	struct sym_quehead * flink){	flink->blink	= new;	new->flink	= flink;	new->blink	= blink;	blink->flink	= new;}static __inline void __sym_que_del(struct sym_quehead * blink,	struct sym_quehead * flink){	flink->blink = blink;	blink->flink = flink;}static __inline int sym_que_empty(struct sym_quehead *head){	return head->flink == head;}static __inline void sym_que_splice(struct sym_quehead *list,	struct sym_quehead *head){	struct sym_quehead *first = list->flink;	if (first != list) {		struct sym_quehead *last = list->blink;		struct sym_quehead *at   = head->flink;		first->blink = head;		head->flink  = first;		last->flink = at;		at->blink   = last;	}}static __inline void sym_que_move(struct sym_quehead *orig,	struct sym_quehead *dest){	struct sym_quehead *first, *last;	first = orig->flink;	if (first != orig) {		first->blink = dest;		dest->flink  = first;		last = orig->blink;		last->flink  = dest;		dest->blink  = last;		orig->flink  = orig;		orig->blink  = orig;	} else {		dest->flink  = dest;		dest->blink  = dest;	}}#define sym_que_entry(ptr, type, member) \	((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))#define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)#define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)#define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head){	struct sym_quehead *elem = head->flink;	if (elem != head)		__sym_que_del(head, elem->flink);	else		elem = 0;	return elem;}#define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head){	struct sym_quehead *elem = head->blink;	if (elem != head)		__sym_que_del(elem->blink, head);	else		elem = 0;	return elem;}/* *  This one may be useful. */#define FOR_EACH_QUEUED_ELEMENT(head, qp) \	for (qp = (head)->flink; qp != (head); qp = qp->flink)/* *  FreeBSD does not offer our kind of queue in the CAM CCB. *  So, we have to cast. */#define sym_qptr(p)	((struct sym_quehead *) (p))/* *  Simple bitmap operations. */ #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))#define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))#define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))/* *  Portable but silly implemented byte order primitives. */#if	BYTE_ORDER == BIG_ENDIAN#define __revb16(x) (	(((u16)(x) & (u16)0x00ffU) << 8) | \			(((u16)(x) & (u16)0xff00U) >> 8) 	)#define __revb32(x) (	(((u32)(x) & 0x000000ffU) << 24) | \			(((u32)(x) & 0x0000ff00U) <<  8) | \			(((u32)(x) & 0x00ff0000U) >>  8) | \			(((u32)(x) & 0xff000000U) >> 24)	)#define __htole16(v)	__revb16(v)#define __htole32(v)	__revb32(v)#define __le16toh(v)	__htole16(v)#define __le32toh(v)	__htole32(v)static __inline u16	_htole16(u16 v) { return __htole16(v); }static __inline u32	_htole32(u32 v) { return __htole32(v); }#define _le16toh	_htole16#define _le32toh	_htole32#else	/* LITTLE ENDIAN */#define __htole16(v)	(v)#define __htole32(v)	(v)#define __le16toh(v)	(v)#define __le32toh(v)	(v)#define _htole16(v)	(v)#define _htole32(v)	(v)#define _le16toh(v)	(v)#define _le32toh(v)	(v)#endif	/* BYTE_ORDER *//* * The below round up/down macros are to be used with a constant  * as argument (sizeof(...) for example), for the compiler to  * optimize the whole thing. */#define _U_(a,m)	(a)<=(1<<m)?m:#define _D_(a,m)	(a)<(1<<(m+1))?m:/* * Round up logarithm to base 2 of a 16 bit constant. */#define _LGRU16_(a) \( \ _U_(a, 0)_U_(a, 1)_U_(a, 2)_U_(a, 3)_U_(a, 4)_U_(a, 5)_U_(a, 6)_U_(a, 7) \ _U_(a, 8)_U_(a, 9)_U_(a,10)_U_(a,11)_U_(a,12)_U_(a,13)_U_(a,14)_U_(a,15) \ 16)/* * Round down logarithm to base 2 of a 16 bit constant. */#define _LGRD16_(a) \( \ _D_(a, 0)_D_(a, 1)_D_(a, 2)_D_(a, 3)_D_(a, 4)_D_(a, 5)_D_(a, 6)_D_(a, 7) \ _D_(a, 8)_D_(a, 9)_D_(a,10)_D_(a,11)_D_(a,12)_D_(a,13)_D_(a,14)_D_(a,15) \ 16)/* * Round up a 16 bit constant to the nearest power of 2. */#define _SZRU16_(a) ((a)==0?0:(1<<_LGRU16_(a)))/* * Round down a 16 bit constant to the nearest power of 2. */#define _SZRD16_(a) ((a)==0?0:(1<<_LGRD16_(a)))#endif /* SYM_MISC_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -