⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poly_tan.c

📁 内核linux2.4.20,可跟rtlinux3.2打补丁 组成实时linux系统,编译内核
💻 C
字号:
/*---------------------------------------------------------------------------+ |  poly_tan.c                                                               | |                                                                           | | Compute the tan of a FPU_REG, using a polynomial approximation.           | |                                                                           | | Copyright (C) 1992,1993,1994,1997,1999                                    | |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      | |                       Australia.  E-mail   billm@melbpc.org.au            | |                                                                           | |                                                                           | +---------------------------------------------------------------------------*/#include "exception.h"#include "reg_constant.h"#include "fpu_emu.h"#include "fpu_system.h"#include "control_w.h"#include "poly.h"#define	HiPOWERop	3	/* odd poly, positive terms */static const unsigned long long oddplterm[HiPOWERop] ={  0x0000000000000000LL,  0x0051a1cf08fca228LL,  0x0000000071284ff7LL};#define	HiPOWERon	2	/* odd poly, negative terms */static const unsigned long long oddnegterm[HiPOWERon] ={   0x1291a9a184244e80LL,   0x0000583245819c21LL};#define	HiPOWERep	2	/* even poly, positive terms */static const unsigned long long evenplterm[HiPOWERep] ={  0x0e848884b539e888LL,  0x00003c7f18b887daLL};#define	HiPOWERen	2	/* even poly, negative terms */static const unsigned long long evennegterm[HiPOWERen] ={  0xf1f0200fd51569ccLL,  0x003afb46105c4432LL};static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;/*--- poly_tan() ------------------------------------------------------------+ |                                                                           | +---------------------------------------------------------------------------*/void	poly_tan(FPU_REG *st0_ptr){  long int    		exponent;  int                   invert;  Xsig                  argSq, argSqSq, accumulatoro, accumulatore, accum,                        argSignif, fix_up;  unsigned long         adj;  exponent = exponent(st0_ptr);#ifdef PARANOID  if ( signnegative(st0_ptr) )	/* Can't hack a number < 0.0 */    { arith_invalid(0); return; }  /* Need a positive number */#endif /* PARANOID */  /* Split the problem into two domains, smaller and larger than pi/4 */  if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) )    {      /* The argument is greater than (approx) pi/4 */      invert = 1;      accum.lsw = 0;      XSIG_LL(accum) = significand(st0_ptr);       if ( exponent == 0 )	{	  /* The argument is >= 1.0 */	  /* Put the binary point at the left. */	  XSIG_LL(accum) <<= 1;	}      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */      XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);      /* This is a special case which arises due to rounding. */      if ( XSIG_LL(accum) == 0xffffffffffffffffLL )	{	  FPU_settag0(TAG_Valid);	  significand(st0_ptr) = 0x8a51e04daabda360LL;	  setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative);	  return;	}      argSignif.lsw = accum.lsw;      XSIG_LL(argSignif) = XSIG_LL(accum);      exponent = -1 + norm_Xsig(&argSignif);    }  else    {      invert = 0;      argSignif.lsw = 0;      XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);       if ( exponent < -1 )	{	  /* shift the argument right by the required places */	  if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U )	    XSIG_LL(accum) ++;	/* round up */	}    }  XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw;  mul_Xsig_Xsig(&argSq, &argSq);  XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw;  mul_Xsig_Xsig(&argSqSq, &argSqSq);  /* Compute the negative terms for the numerator polynomial */  accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1);  mul_Xsig_Xsig(&accumulatoro, &argSq);  negate_Xsig(&accumulatoro);  /* Add the positive terms */  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1);    /* Compute the positive terms for the denominator polynomial */  accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1);  mul_Xsig_Xsig(&accumulatore, &argSq);  negate_Xsig(&accumulatore);  /* Add the negative terms */  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1);  /* Multiply by arg^2 */  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));  /* de-normalize and divide by 2 */  shr_Xsig(&accumulatore, -2*(1+exponent) + 1);  negate_Xsig(&accumulatore);      /* This does 1 - accumulator */  /* Now find the ratio. */  if ( accumulatore.msw == 0 )    {      /* accumulatoro must contain 1.0 here, (actually, 0) but it	 really doesn't matter what value we use because it will	 have negligible effect in later calculations	 */      XSIG_LL(accum) = 0x8000000000000000LL;      accum.lsw = 0;    }  else    {      div_Xsig(&accumulatoro, &accumulatore, &accum);    }  /* Multiply by 1/3 * arg^3 */  mul64_Xsig(&accum, &XSIG_LL(argSignif));  mul64_Xsig(&accum, &XSIG_LL(argSignif));  mul64_Xsig(&accum, &XSIG_LL(argSignif));  mul64_Xsig(&accum, &twothirds);  shr_Xsig(&accum, -2*(exponent+1));  /* tan(arg) = arg + accum */  add_two_Xsig(&accum, &argSignif, &exponent);  if ( invert )    {      /* We now have the value of tan(pi_2 - arg) where pi_2 is an	 approximation for pi/2	 */      /* The next step is to fix the answer to compensate for the	 error due to the approximation used for pi/2	 */      /* This is (approx) delta, the error in our approx for pi/2	 (see above). It has an exponent of -65	 */      XSIG_LL(fix_up) = 0x898cc51701b839a2LL;      fix_up.lsw = 0;      if ( exponent == 0 )	adj = 0xffffffff;   /* We want approx 1.0 here, but			       this is close enough. */      else if ( exponent > -30 )	{	  adj = accum.msw >> -(exponent+1);      /* tan */	  adj = mul_32_32(adj, adj);             /* tan^2 */	}      else	adj = 0;      adj = mul_32_32(0x898cc517, adj);          /* delta * tan^2 */      fix_up.msw += adj;      if ( !(fix_up.msw & 0x80000000) )   /* did fix_up overflow ? */	{	  /* Yes, we need to add an msb */	  shr_Xsig(&fix_up, 1);	  fix_up.msw |= 0x80000000;	  shr_Xsig(&fix_up, 64 + exponent);	}      else	shr_Xsig(&fix_up, 65 + exponent);      add_two_Xsig(&accum, &fix_up, &exponent);      /* accum now contains tan(pi/2 - arg).	 Use tan(arg) = 1.0 / tan(pi/2 - arg)	 */      accumulatoro.lsw = accumulatoro.midw = 0;      accumulatoro.msw = 0x80000000;      div_Xsig(&accumulatoro, &accum, &accum);      exponent = - exponent - 1;    }  /* Transfer the result */  round_Xsig(&accum);  FPU_settag0(TAG_Valid);  significand(st0_ptr) = XSIG_LL(accum);  setexponent16(st0_ptr, exponent + EXTENDED_Ebias);  /* Result is positive. */}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -