⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 smpboot.c

📁 内核linux2.4.20,可跟rtlinux3.2打补丁 组成实时linux系统,编译内核
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *	x86 SMP booting functions * *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com> *	(c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> * *	Much of the core SMP work is based on previous work by Thomas Radke, to *	whom a great many thanks are extended. * *	Thanks to Intel for making available several different Pentium, *	Pentium Pro and Pentium-II/Xeon MP machines. *	Original development of Linux SMP code supported by Caldera. * *	This code is released under the GNU General Public License version 2 or *	later. * *	Fixes *		Felix Koop	:	NR_CPUS used properly *		Jose Renau	:	Handle single CPU case. *		Alan Cox	:	By repeated request 8) - Total BogoMIP report. *		Greg Wright	:	Fix for kernel stacks panic. *		Erich Boleyn	:	MP v1.4 and additional changes. *	Matthias Sattler	:	Changes for 2.1 kernel map. *	Michel Lespinasse	:	Changes for 2.1 kernel map. *	Michael Chastain	:	Change trampoline.S to gnu as. *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine *		Ingo Molnar	:	Added APIC timers, based on code *					from Jose Renau *		Ingo Molnar	:	various cleanups and rewrites *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug. *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs *		Martin J. Bligh	: 	Added support for multi-quad systems */#include <linux/config.h>#include <linux/init.h>#include <linux/mm.h>#include <linux/kernel_stat.h>#include <linux/smp_lock.h>#include <linux/irq.h>#include <linux/bootmem.h>#include <linux/delay.h>#include <linux/mc146818rtc.h>#include <asm/mtrr.h>#include <asm/pgalloc.h>#include <asm/smpboot.h>/* Set if we find a B stepping CPU			*/static int smp_b_stepping;/* Setup configured maximum number of CPUs to activate */static int max_cpus = -1;/* Total count of live CPUs */int smp_num_cpus = 1;/* Number of siblings per CPU package */int smp_num_siblings = 1;int __initdata phys_proc_id[NR_CPUS]; /* Package ID of each logical CPU *//* Bitmask of currently online CPUs */unsigned long cpu_online_map;static volatile unsigned long cpu_callin_map;static volatile unsigned long cpu_callout_map;/* Per CPU bogomips and other parameters */struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;/* Set when the idlers are all forked */int smp_threads_ready;/* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */static int __init nosmp(char *str){	max_cpus = 0;	return 1;}__setup("nosmp", nosmp);static int __init maxcpus(char *str){	get_option(&str, &max_cpus);	return 1;}__setup("maxcpus=", maxcpus);/* * Trampoline 80x86 program as an array. */extern unsigned char trampoline_data [];extern unsigned char trampoline_end  [];static unsigned char *trampoline_base;/* * Currently trivial. Write the real->protected mode * bootstrap into the page concerned. The caller * has made sure it's suitably aligned. */static unsigned long __init setup_trampoline(void){	memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);	return virt_to_phys(trampoline_base);}/* * We are called very early to get the low memory for the * SMP bootup trampoline page. */void __init smp_alloc_memory(void){	trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);	/*	 * Has to be in very low memory so we can execute	 * real-mode AP code.	 */	if (__pa(trampoline_base) >= 0x9F000)		BUG();}/* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */void __init smp_store_cpu_info(int id){	struct cpuinfo_x86 *c = cpu_data + id;	*c = boot_cpu_data;	c->pte_quick = 0;	c->pmd_quick = 0;	c->pgd_quick = 0;	c->pgtable_cache_sz = 0;	identify_cpu(c);	/*	 * Mask B, Pentium, but not Pentium MMX	 */	if (c->x86_vendor == X86_VENDOR_INTEL &&	    c->x86 == 5 &&	    c->x86_mask >= 1 && c->x86_mask <= 4 &&	    c->x86_model <= 3)		/*		 * Remember we have B step Pentia with bugs		 */		smp_b_stepping = 1;}/* * Architecture specific routine called by the kernel just before init is * fired off. This allows the BP to have everything in order [we hope]. * At the end of this all the APs will hit the system scheduling and off * we go. Each AP will load the system gdt's and jump through the kernel * init into idle(). At this point the scheduler will one day take over * and give them jobs to do. smp_callin is a standard routine * we use to track CPUs as they power up. */static atomic_t smp_commenced = ATOMIC_INIT(0);void __init smp_commence(void){	/*	 * Lets the callins below out of their loop.	 */	Dprintk("Setting commenced=1, go go go\n");	wmb();	atomic_set(&smp_commenced,1);}/* * TSC synchronization. * * We first check wether all CPUs have their TSC's synchronized, * then we print a warning if not, and always resync. */static atomic_t tsc_start_flag = ATOMIC_INIT(0);static atomic_t tsc_count_start = ATOMIC_INIT(0);static atomic_t tsc_count_stop = ATOMIC_INIT(0);static unsigned long long tsc_values[NR_CPUS];#define NR_LOOPS 5extern unsigned long fast_gettimeoffset_quotient;/* * accurate 64-bit/32-bit division, expanded to 32-bit divisions and 64-bit * multiplication. Not terribly optimized but we need it at boot time only * anyway. * * result == a / b *	== (a1 + a2*(2^32)) / b *	== a1/b + a2*(2^32/b) *	== a1/b + a2*((2^32-1)/b) + a2/b + (a2*((2^32-1) % b))/b *		    ^---- (this multiplication can overflow) */static unsigned long long div64 (unsigned long long a, unsigned long b0){	unsigned int a1, a2;	unsigned long long res;	a1 = ((unsigned int*)&a)[0];	a2 = ((unsigned int*)&a)[1];	res = a1/b0 +		(unsigned long long)a2 * (unsigned long long)(0xffffffff/b0) +		a2 / b0 +		(a2 * (0xffffffff % b0)) / b0;	return res;}static void __init synchronize_tsc_bp (void){	int i;	unsigned long long t0;	unsigned long long sum, avg;	long long delta;	unsigned long one_usec;	int buggy = 0;	printk("checking TSC synchronization across CPUs: ");	one_usec = ((1<<30)/fast_gettimeoffset_quotient)*(1<<2);	atomic_set(&tsc_start_flag, 1);	wmb();	/*	 * We loop a few times to get a primed instruction cache,	 * then the last pass is more or less synchronized and	 * the BP and APs set their cycle counters to zero all at	 * once. This reduces the chance of having random offsets	 * between the processors, and guarantees that the maximum	 * delay between the cycle counters is never bigger than	 * the latency of information-passing (cachelines) between	 * two CPUs.	 */	for (i = 0; i < NR_LOOPS; i++) {		/*		 * all APs synchronize but they loop on '== num_cpus'		 */		while (atomic_read(&tsc_count_start) != smp_num_cpus-1) mb();		atomic_set(&tsc_count_stop, 0);		wmb();		/*		 * this lets the APs save their current TSC:		 */		atomic_inc(&tsc_count_start);		rdtscll(tsc_values[smp_processor_id()]);		/*		 * We clear the TSC in the last loop:		 */		if (i == NR_LOOPS-1)			write_tsc(0, 0);		/*		 * Wait for all APs to leave the synchronization point:		 */		while (atomic_read(&tsc_count_stop) != smp_num_cpus-1) mb();		atomic_set(&tsc_count_start, 0);		wmb();		atomic_inc(&tsc_count_stop);	}	sum = 0;	for (i = 0; i < smp_num_cpus; i++) {		t0 = tsc_values[i];		sum += t0;	}	avg = div64(sum, smp_num_cpus);	sum = 0;	for (i = 0; i < smp_num_cpus; i++) {		delta = tsc_values[i] - avg;		if (delta < 0)			delta = -delta;		/*		 * We report bigger than 2 microseconds clock differences.		 */		if (delta > 2*one_usec) {			long realdelta;			if (!buggy) {				buggy = 1;				printk("\n");			}			realdelta = div64(delta, one_usec);			if (tsc_values[i] < avg)				realdelta = -realdelta;			printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.\n",				i, realdelta);		}		sum += delta;	}	if (!buggy)		printk("passed.\n");}static void __init synchronize_tsc_ap (void){	int i;	/*	 * smp_num_cpus is not necessarily known at the time	 * this gets called, so we first wait for the BP to	 * finish SMP initialization:	 */	while (!atomic_read(&tsc_start_flag)) mb();	for (i = 0; i < NR_LOOPS; i++) {		atomic_inc(&tsc_count_start);		while (atomic_read(&tsc_count_start) != smp_num_cpus) mb();		rdtscll(tsc_values[smp_processor_id()]);		if (i == NR_LOOPS-1)			write_tsc(0, 0);		atomic_inc(&tsc_count_stop);		while (atomic_read(&tsc_count_stop) != smp_num_cpus) mb();	}}#undef NR_LOOPSextern void calibrate_delay(void);static atomic_t init_deasserted;void __init smp_callin(void){	int cpuid, phys_id;	unsigned long timeout;	/*	 * If waken up by an INIT in an 82489DX configuration	 * we may get here before an INIT-deassert IPI reaches	 * our local APIC.  We have to wait for the IPI or we'll	 * lock up on an APIC access.	 */	if (!clustered_apic_mode) 		while (!atomic_read(&init_deasserted));	/*	 * (This works even if the APIC is not enabled.)	 */	phys_id = GET_APIC_ID(apic_read(APIC_ID));	cpuid = current->processor;	if (test_and_set_bit(cpuid, &cpu_online_map)) {		printk("huh, phys CPU#%d, CPU#%d already present??\n",					phys_id, cpuid);		BUG();	}	Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);	/*	 * STARTUP IPIs are fragile beasts as they might sometimes	 * trigger some glue motherboard logic. Complete APIC bus	 * silence for 1 second, this overestimates the time the	 * boot CPU is spending to send the up to 2 STARTUP IPIs	 * by a factor of two. This should be enough.	 */	/*	 * Waiting 2s total for startup (udelay is not yet working)	 */	timeout = jiffies + 2*HZ;	while (time_before(jiffies, timeout)) {		/*		 * Has the boot CPU finished it's STARTUP sequence?		 */		if (test_bit(cpuid, &cpu_callout_map))			break;		rep_nop();	}	if (!time_before(jiffies, timeout)) {		printk("BUG: CPU%d started up but did not get a callout!\n",			cpuid);		BUG();	}	/*	 * the boot CPU has finished the init stage and is spinning	 * on callin_map until we finish. We are free to set up this	 * CPU, first the APIC. (this is probably redundant on most	 * boards)	 */	Dprintk("CALLIN, before setup_local_APIC().\n");	/*	 * Because we use NMIs rather than the INIT-STARTUP sequence to	 * bootstrap the CPUs, the APIC may be in a wierd state. Kick it.	 */	if (clustered_apic_mode)		clear_local_APIC();	setup_local_APIC();	__sti();#ifdef CONFIG_MTRR	/*	 * Must be done before calibration delay is computed	 */	mtrr_init_secondary_cpu ();#endif	/*	 * Get our bogomips.	 */	calibrate_delay();	Dprintk("Stack at about %p\n",&cpuid);	/*	 * Save our processor parameters	 */ 	smp_store_cpu_info(cpuid);	/*	 * Allow the master to continue.	 */	set_bit(cpuid, &cpu_callin_map);	/*	 *      Synchronize the TSC with the BP	 */	if (cpu_has_tsc)		synchronize_tsc_ap();}int cpucount;extern int cpu_idle(void);/* * Activate a secondary processor. */int __init start_secondary(void *unused){	/*	 * Dont put anything before smp_callin(), SMP	 * booting is too fragile that we want to limit the	 * things done here to the most necessary things.	 */	cpu_init();	smp_callin();	while (!atomic_read(&smp_commenced))		rep_nop();	/*	 * low-memory mappings have been cleared, flush them from	 * the local TLBs too.	 */	local_flush_tlb();	return cpu_idle();}/* * Everything has been set up for the secondary * CPUs - they just need to reload everything * from the task structure * This function must not return. */void __init initialize_secondary(void){	/*	 * We don't actually need to load the full TSS,	 * basically just the stack pointer and the eip.	 */	asm volatile(		"movl %0,%%esp\n\t"		"jmp *%1"		:		:"r" (current->thread.esp),"r" (current->thread.eip));}extern struct {	void * esp;	unsigned short ss;} stack_start;static int __init fork_by_hand(void){	struct pt_regs regs;	/*	 * don't care about the eip and regs settings since	 * we'll never reschedule the forked task.	 */	return do_fork(CLONE_VM|CLONE_PID, 0, &regs, 0);}/* which physical APIC ID maps to which logical CPU number */volatile int physical_apicid_2_cpu[MAX_APICID];/* which logical CPU number maps to which physical APIC ID */volatile int cpu_2_physical_apicid[NR_CPUS];/* which logical APIC ID maps to which logical CPU number */volatile int logical_apicid_2_cpu[MAX_APICID];/* which logical CPU number maps to which logical APIC ID */volatile int cpu_2_logical_apicid[NR_CPUS];static inline void init_cpu_to_apicid(void)/* Initialize all maps between cpu number and apicids */{	int apicid, cpu;	for (apicid = 0; apicid < MAX_APICID; apicid++) {		physical_apicid_2_cpu[apicid] = -1;		logical_apicid_2_cpu[apicid] = -1;	}	for (cpu = 0; cpu < NR_CPUS; cpu++) {		cpu_2_physical_apicid[cpu] = -1;		cpu_2_logical_apicid[cpu] = -1;	}}static inline void map_cpu_to_boot_apicid(int cpu, int apicid)/*  * set up a mapping between cpu and apicid. Uses logical apicids for multiquad, * else physical apic ids */{	if (clustered_apic_mode) {		logical_apicid_2_cpu[apicid] = cpu;			cpu_2_logical_apicid[cpu] = apicid;	} else {		physical_apicid_2_cpu[apicid] = cpu;			cpu_2_physical_apicid[cpu] = apicid;	}}static inline void unmap_cpu_to_boot_apicid(int cpu, int apicid)/*  * undo a mapping between cpu and apicid. Uses logical apicids for multiquad, * else physical apic ids */{	if (clustered_apic_mode) {		logical_apicid_2_cpu[apicid] = -1;			cpu_2_logical_apicid[cpu] = -1;	} else {		physical_apicid_2_cpu[apicid] = -1;			cpu_2_physical_apicid[cpu] = -1;	}}#if APIC_DEBUGstatic inline void inquire_remote_apic(int apicid){	int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };	char *names[] = { "ID", "VERSION", "SPIV" };	int timeout, status;	printk("Inquiring remote APIC #%d...\n", apicid);	for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {		printk("... APIC #%d %s: ", apicid, names[i]);		/*		 * Wait for idle.		 */		apic_wait_icr_idle();		apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));		apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);		timeout = 0;		do {			udelay(100);			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);		switch (status) {		case APIC_ICR_RR_VALID:			status = apic_read(APIC_RRR);			printk("%08x\n", status);			break;		default:			printk("failed\n");		}	}}#endifstatic int wakeup_secondary_via_NMI(int logical_apicid)/*  * Poke the other CPU in the eye to wake it up. Remember that the normal * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this * won't ... remember to clear down the APIC, etc later. */{

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -