📄 smpboot.c
字号:
/* * x86 SMP booting functions * * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> * * Much of the core SMP work is based on previous work by Thomas Radke, to * whom a great many thanks are extended. * * Thanks to Intel for making available several different Pentium, * Pentium Pro and Pentium-II/Xeon MP machines. * Original development of Linux SMP code supported by Caldera. * * This code is released under the GNU General Public License version 2 or * later. * * Fixes * Felix Koop : NR_CPUS used properly * Jose Renau : Handle single CPU case. * Alan Cox : By repeated request 8) - Total BogoMIP report. * Greg Wright : Fix for kernel stacks panic. * Erich Boleyn : MP v1.4 and additional changes. * Matthias Sattler : Changes for 2.1 kernel map. * Michel Lespinasse : Changes for 2.1 kernel map. * Michael Chastain : Change trampoline.S to gnu as. * Alan Cox : Dumb bug: 'B' step PPro's are fine * Ingo Molnar : Added APIC timers, based on code * from Jose Renau * Ingo Molnar : various cleanups and rewrites * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. * Maciej W. Rozycki : Bits for genuine 82489DX APICs * Martin J. Bligh : Added support for multi-quad systems */#include <linux/config.h>#include <linux/init.h>#include <linux/mm.h>#include <linux/kernel_stat.h>#include <linux/smp_lock.h>#include <linux/irq.h>#include <linux/bootmem.h>#include <linux/delay.h>#include <linux/mc146818rtc.h>#include <asm/mtrr.h>#include <asm/pgalloc.h>#include <asm/smpboot.h>/* Set if we find a B stepping CPU */static int smp_b_stepping;/* Setup configured maximum number of CPUs to activate */static int max_cpus = -1;/* Total count of live CPUs */int smp_num_cpus = 1;/* Number of siblings per CPU package */int smp_num_siblings = 1;int __initdata phys_proc_id[NR_CPUS]; /* Package ID of each logical CPU *//* Bitmask of currently online CPUs */unsigned long cpu_online_map;static volatile unsigned long cpu_callin_map;static volatile unsigned long cpu_callout_map;/* Per CPU bogomips and other parameters */struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;/* Set when the idlers are all forked */int smp_threads_ready;/* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */static int __init nosmp(char *str){ max_cpus = 0; return 1;}__setup("nosmp", nosmp);static int __init maxcpus(char *str){ get_option(&str, &max_cpus); return 1;}__setup("maxcpus=", maxcpus);/* * Trampoline 80x86 program as an array. */extern unsigned char trampoline_data [];extern unsigned char trampoline_end [];static unsigned char *trampoline_base;/* * Currently trivial. Write the real->protected mode * bootstrap into the page concerned. The caller * has made sure it's suitably aligned. */static unsigned long __init setup_trampoline(void){ memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); return virt_to_phys(trampoline_base);}/* * We are called very early to get the low memory for the * SMP bootup trampoline page. */void __init smp_alloc_memory(void){ trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE); /* * Has to be in very low memory so we can execute * real-mode AP code. */ if (__pa(trampoline_base) >= 0x9F000) BUG();}/* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */void __init smp_store_cpu_info(int id){ struct cpuinfo_x86 *c = cpu_data + id; *c = boot_cpu_data; c->pte_quick = 0; c->pmd_quick = 0; c->pgd_quick = 0; c->pgtable_cache_sz = 0; identify_cpu(c); /* * Mask B, Pentium, but not Pentium MMX */ if (c->x86_vendor == X86_VENDOR_INTEL && c->x86 == 5 && c->x86_mask >= 1 && c->x86_mask <= 4 && c->x86_model <= 3) /* * Remember we have B step Pentia with bugs */ smp_b_stepping = 1;}/* * Architecture specific routine called by the kernel just before init is * fired off. This allows the BP to have everything in order [we hope]. * At the end of this all the APs will hit the system scheduling and off * we go. Each AP will load the system gdt's and jump through the kernel * init into idle(). At this point the scheduler will one day take over * and give them jobs to do. smp_callin is a standard routine * we use to track CPUs as they power up. */static atomic_t smp_commenced = ATOMIC_INIT(0);void __init smp_commence(void){ /* * Lets the callins below out of their loop. */ Dprintk("Setting commenced=1, go go go\n"); wmb(); atomic_set(&smp_commenced,1);}/* * TSC synchronization. * * We first check wether all CPUs have their TSC's synchronized, * then we print a warning if not, and always resync. */static atomic_t tsc_start_flag = ATOMIC_INIT(0);static atomic_t tsc_count_start = ATOMIC_INIT(0);static atomic_t tsc_count_stop = ATOMIC_INIT(0);static unsigned long long tsc_values[NR_CPUS];#define NR_LOOPS 5extern unsigned long fast_gettimeoffset_quotient;/* * accurate 64-bit/32-bit division, expanded to 32-bit divisions and 64-bit * multiplication. Not terribly optimized but we need it at boot time only * anyway. * * result == a / b * == (a1 + a2*(2^32)) / b * == a1/b + a2*(2^32/b) * == a1/b + a2*((2^32-1)/b) + a2/b + (a2*((2^32-1) % b))/b * ^---- (this multiplication can overflow) */static unsigned long long div64 (unsigned long long a, unsigned long b0){ unsigned int a1, a2; unsigned long long res; a1 = ((unsigned int*)&a)[0]; a2 = ((unsigned int*)&a)[1]; res = a1/b0 + (unsigned long long)a2 * (unsigned long long)(0xffffffff/b0) + a2 / b0 + (a2 * (0xffffffff % b0)) / b0; return res;}static void __init synchronize_tsc_bp (void){ int i; unsigned long long t0; unsigned long long sum, avg; long long delta; unsigned long one_usec; int buggy = 0; printk("checking TSC synchronization across CPUs: "); one_usec = ((1<<30)/fast_gettimeoffset_quotient)*(1<<2); atomic_set(&tsc_start_flag, 1); wmb(); /* * We loop a few times to get a primed instruction cache, * then the last pass is more or less synchronized and * the BP and APs set their cycle counters to zero all at * once. This reduces the chance of having random offsets * between the processors, and guarantees that the maximum * delay between the cycle counters is never bigger than * the latency of information-passing (cachelines) between * two CPUs. */ for (i = 0; i < NR_LOOPS; i++) { /* * all APs synchronize but they loop on '== num_cpus' */ while (atomic_read(&tsc_count_start) != smp_num_cpus-1) mb(); atomic_set(&tsc_count_stop, 0); wmb(); /* * this lets the APs save their current TSC: */ atomic_inc(&tsc_count_start); rdtscll(tsc_values[smp_processor_id()]); /* * We clear the TSC in the last loop: */ if (i == NR_LOOPS-1) write_tsc(0, 0); /* * Wait for all APs to leave the synchronization point: */ while (atomic_read(&tsc_count_stop) != smp_num_cpus-1) mb(); atomic_set(&tsc_count_start, 0); wmb(); atomic_inc(&tsc_count_stop); } sum = 0; for (i = 0; i < smp_num_cpus; i++) { t0 = tsc_values[i]; sum += t0; } avg = div64(sum, smp_num_cpus); sum = 0; for (i = 0; i < smp_num_cpus; i++) { delta = tsc_values[i] - avg; if (delta < 0) delta = -delta; /* * We report bigger than 2 microseconds clock differences. */ if (delta > 2*one_usec) { long realdelta; if (!buggy) { buggy = 1; printk("\n"); } realdelta = div64(delta, one_usec); if (tsc_values[i] < avg) realdelta = -realdelta; printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.\n", i, realdelta); } sum += delta; } if (!buggy) printk("passed.\n");}static void __init synchronize_tsc_ap (void){ int i; /* * smp_num_cpus is not necessarily known at the time * this gets called, so we first wait for the BP to * finish SMP initialization: */ while (!atomic_read(&tsc_start_flag)) mb(); for (i = 0; i < NR_LOOPS; i++) { atomic_inc(&tsc_count_start); while (atomic_read(&tsc_count_start) != smp_num_cpus) mb(); rdtscll(tsc_values[smp_processor_id()]); if (i == NR_LOOPS-1) write_tsc(0, 0); atomic_inc(&tsc_count_stop); while (atomic_read(&tsc_count_stop) != smp_num_cpus) mb(); }}#undef NR_LOOPSextern void calibrate_delay(void);static atomic_t init_deasserted;void __init smp_callin(void){ int cpuid, phys_id; unsigned long timeout; /* * If waken up by an INIT in an 82489DX configuration * we may get here before an INIT-deassert IPI reaches * our local APIC. We have to wait for the IPI or we'll * lock up on an APIC access. */ if (!clustered_apic_mode) while (!atomic_read(&init_deasserted)); /* * (This works even if the APIC is not enabled.) */ phys_id = GET_APIC_ID(apic_read(APIC_ID)); cpuid = current->processor; if (test_and_set_bit(cpuid, &cpu_online_map)) { printk("huh, phys CPU#%d, CPU#%d already present??\n", phys_id, cpuid); BUG(); } Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); /* * STARTUP IPIs are fragile beasts as they might sometimes * trigger some glue motherboard logic. Complete APIC bus * silence for 1 second, this overestimates the time the * boot CPU is spending to send the up to 2 STARTUP IPIs * by a factor of two. This should be enough. */ /* * Waiting 2s total for startup (udelay is not yet working) */ timeout = jiffies + 2*HZ; while (time_before(jiffies, timeout)) { /* * Has the boot CPU finished it's STARTUP sequence? */ if (test_bit(cpuid, &cpu_callout_map)) break; rep_nop(); } if (!time_before(jiffies, timeout)) { printk("BUG: CPU%d started up but did not get a callout!\n", cpuid); BUG(); } /* * the boot CPU has finished the init stage and is spinning * on callin_map until we finish. We are free to set up this * CPU, first the APIC. (this is probably redundant on most * boards) */ Dprintk("CALLIN, before setup_local_APIC().\n"); /* * Because we use NMIs rather than the INIT-STARTUP sequence to * bootstrap the CPUs, the APIC may be in a wierd state. Kick it. */ if (clustered_apic_mode) clear_local_APIC(); setup_local_APIC(); __sti();#ifdef CONFIG_MTRR /* * Must be done before calibration delay is computed */ mtrr_init_secondary_cpu ();#endif /* * Get our bogomips. */ calibrate_delay(); Dprintk("Stack at about %p\n",&cpuid); /* * Save our processor parameters */ smp_store_cpu_info(cpuid); /* * Allow the master to continue. */ set_bit(cpuid, &cpu_callin_map); /* * Synchronize the TSC with the BP */ if (cpu_has_tsc) synchronize_tsc_ap();}int cpucount;extern int cpu_idle(void);/* * Activate a secondary processor. */int __init start_secondary(void *unused){ /* * Dont put anything before smp_callin(), SMP * booting is too fragile that we want to limit the * things done here to the most necessary things. */ cpu_init(); smp_callin(); while (!atomic_read(&smp_commenced)) rep_nop(); /* * low-memory mappings have been cleared, flush them from * the local TLBs too. */ local_flush_tlb(); return cpu_idle();}/* * Everything has been set up for the secondary * CPUs - they just need to reload everything * from the task structure * This function must not return. */void __init initialize_secondary(void){ /* * We don't actually need to load the full TSS, * basically just the stack pointer and the eip. */ asm volatile( "movl %0,%%esp\n\t" "jmp *%1" : :"r" (current->thread.esp),"r" (current->thread.eip));}extern struct { void * esp; unsigned short ss;} stack_start;static int __init fork_by_hand(void){ struct pt_regs regs; /* * don't care about the eip and regs settings since * we'll never reschedule the forked task. */ return do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0);}/* which physical APIC ID maps to which logical CPU number */volatile int physical_apicid_2_cpu[MAX_APICID];/* which logical CPU number maps to which physical APIC ID */volatile int cpu_2_physical_apicid[NR_CPUS];/* which logical APIC ID maps to which logical CPU number */volatile int logical_apicid_2_cpu[MAX_APICID];/* which logical CPU number maps to which logical APIC ID */volatile int cpu_2_logical_apicid[NR_CPUS];static inline void init_cpu_to_apicid(void)/* Initialize all maps between cpu number and apicids */{ int apicid, cpu; for (apicid = 0; apicid < MAX_APICID; apicid++) { physical_apicid_2_cpu[apicid] = -1; logical_apicid_2_cpu[apicid] = -1; } for (cpu = 0; cpu < NR_CPUS; cpu++) { cpu_2_physical_apicid[cpu] = -1; cpu_2_logical_apicid[cpu] = -1; }}static inline void map_cpu_to_boot_apicid(int cpu, int apicid)/* * set up a mapping between cpu and apicid. Uses logical apicids for multiquad, * else physical apic ids */{ if (clustered_apic_mode) { logical_apicid_2_cpu[apicid] = cpu; cpu_2_logical_apicid[cpu] = apicid; } else { physical_apicid_2_cpu[apicid] = cpu; cpu_2_physical_apicid[cpu] = apicid; }}static inline void unmap_cpu_to_boot_apicid(int cpu, int apicid)/* * undo a mapping between cpu and apicid. Uses logical apicids for multiquad, * else physical apic ids */{ if (clustered_apic_mode) { logical_apicid_2_cpu[apicid] = -1; cpu_2_logical_apicid[cpu] = -1; } else { physical_apicid_2_cpu[apicid] = -1; cpu_2_physical_apicid[cpu] = -1; }}#if APIC_DEBUGstatic inline void inquire_remote_apic(int apicid){ int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; char *names[] = { "ID", "VERSION", "SPIV" }; int timeout, status; printk("Inquiring remote APIC #%d...\n", apicid); for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) { printk("... APIC #%d %s: ", apicid, names[i]); /* * Wait for idle. */ apic_wait_icr_idle(); apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]); timeout = 0; do { udelay(100); status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); switch (status) { case APIC_ICR_RR_VALID: status = apic_read(APIC_RRR); printk("%08x\n", status); break; default: printk("failed\n"); } }}#endifstatic int wakeup_secondary_via_NMI(int logical_apicid)/* * Poke the other CPU in the eye to wake it up. Remember that the normal * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this * won't ... remember to clear down the APIC, etc later. */{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -