⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fault.c

📁 内核linux2.4.20,可跟rtlinux3.2打补丁 组成实时linux系统,编译内核
💻 C
字号:
/* $Id: fault.c,v 1.5 2000/01/26 16:20:29 jsm Exp $ * * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) * Copyright 1999 Hewlett Packard Co. * */#include <linux/mm.h>#include <linux/ptrace.h>#include <linux/sched.h>#include <linux/interrupt.h>#include <asm/uaccess.h>/* Defines for parisc_acctyp()	*/#define READ		0#define WRITE		1/* Various important other fields */#define bit22set(x)		(x & 0x00000200)#define bits23_25set(x)		(x & 0x000001c0)#define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)				/* extended opcode is 0x6a */#define BITSSET		0x1c0	/* for identifying LDCW *//* * parisc_acctyp(unsigned int inst) -- *    Given a PA-RISC memory access instruction, determine if the *    the instruction would perform a memory read or memory write *    operation. * *    This function assumes that the given instruction is a memory access *    instruction (i.e. you should really only call it if you know that *    the instruction has generated some sort of a memory access fault). * * Returns: *   VM_READ  if read operation *   VM_WRITE if write operation *   VM_EXEC  if execute operation */static unsigned longparisc_acctyp(unsigned long code, unsigned int inst){	if (code == 6 || code == 16)	    return VM_EXEC;	switch (inst & 0xf0000000) {	case 0x40000000: /* load */	case 0x50000000: /* new load */		return VM_READ;	case 0x60000000: /* store */	case 0x70000000: /* new store */		return VM_WRITE;	case 0x20000000: /* coproc */	case 0x30000000: /* coproc2 */		if (bit22set(inst))			return VM_WRITE;	case 0x0: /* indexed/memory management */		if (bit22set(inst)) {			/*			 * Check for the 'Graphics Flush Read' instruction.			 * It resembles an FDC instruction, except for bits			 * 20 and 21. Any combination other than zero will			 * utilize the block mover functionality on some			 * older PA-RISC platforms.  The case where a block			 * move is performed from VM to graphics IO space			 * should be treated as a READ.			 *			 * The significance of bits 20,21 in the FDC			 * instruction is:			 *			 *   00  Flush data cache (normal instruction behavior)			 *   01  Graphics flush write  (IO space -> VM)			 *   10  Graphics flush read   (VM -> IO space)			 *   11  Graphics flush read/write (VM <-> IO space)			 */			if (isGraphicsFlushRead(inst))				return VM_READ;			return VM_WRITE;		} else {			/*			 * Check for LDCWX and LDCWS (semaphore instructions).			 * If bits 23 through 25 are all 1's it is one of			 * the above two instructions and is a write.			 *			 * Note: With the limited bits we are looking at,			 * this will also catch PROBEW and PROBEWI. However,			 * these should never get in here because they don't			 * generate exceptions of the type:			 *   Data TLB miss fault/data page fault			 *   Data memory protection trap			 */			if (bits23_25set(inst) == BITSSET)				return VM_WRITE;		}		return VM_READ; /* Default */	}	return VM_READ; /* Default */}#undef bit22set#undef bits23_25set#undef isGraphicsFlushRead#undef BITSSET/* This is similar to expand_stack(), except that it is for stacks * that grow upwards. */static inline int expand_stackup(struct vm_area_struct * vma, unsigned long address){	unsigned long grow;	address += 4 + PAGE_SIZE - 1;	address &= PAGE_MASK;	grow = (address - vma->vm_end) >> PAGE_SHIFT;	if (address - vma->vm_start > current->rlim[RLIMIT_STACK].rlim_cur ||	    ((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) > current->rlim[RLIMIT_AS].rlim_cur)		return -ENOMEM;	vma->vm_end = address;	vma->vm_mm->total_vm += grow;	if (vma->vm_flags & VM_LOCKED)		vma->vm_mm->locked_vm += grow;	return 0;}/* This is similar to find_vma(), except that it understands that stacks * grow up rather than down. * XXX Optimise by making use of cache and avl tree as per find_vma(). */struct vm_area_struct * pa_find_vma(struct mm_struct * mm, unsigned long addr){	struct vm_area_struct *vma = NULL;	if (mm) {		vma = mm->mmap;		if (!vma || addr < vma->vm_start)			return NULL;		while (vma->vm_next && addr >= vma->vm_next->vm_start)			vma = vma->vm_next;	}	return vma;}/* * This routine handles page faults.  It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */extern void parisc_terminate(char *, struct pt_regs *, int, unsigned long);void do_page_fault(struct pt_regs *regs, unsigned long code,			      unsigned long address){	struct vm_area_struct * vma;	struct task_struct *tsk = current;	struct mm_struct *mm = tsk->mm;	const struct exception_table_entry *fix;	unsigned long acc_type;	if (in_interrupt() || !mm)		goto no_context;	down_read(&mm->mmap_sem);	vma = pa_find_vma(mm, address);	if (!vma)		goto bad_area;	if (address < vma->vm_end)		goto good_area;	if (!(vma->vm_flags & VM_GROWSUP) || expand_stackup(vma, address))		goto bad_area;/* * Ok, we have a good vm_area for this memory access. We still need to * check the access permissions. */good_area:	acc_type = parisc_acctyp(code,regs->iir);	if ((vma->vm_flags & acc_type) != acc_type)		goto bad_area;	/*	 * If for any reason at all we couldn't handle the fault, make	 * sure we exit gracefully rather than endlessly redo the	 * fault.	 */	switch (handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0)) {	      case 1:		++current->min_flt;		break;	      case 2:		++current->maj_flt;		break;	      case 0:		/*		 * We ran out of memory, or some other thing happened		 * to us that made us unable to handle the page fault		 * gracefully.		 */		goto bad_area;	      default:		goto out_of_memory;	}	up_read(&mm->mmap_sem);	return;/* * Something tried to access memory that isn't in our memory map.. */bad_area:	up_read(&mm->mmap_sem);	if (user_mode(regs)) {		struct siginfo si;		printk("\ndo_page_fault() pid=%d command='%s'\n",		    tsk->pid, tsk->comm);		show_regs(regs);		/* FIXME: actually we need to get the signo and code correct */		si.si_signo = SIGSEGV;		si.si_errno = 0;		si.si_code = SEGV_MAPERR;		si.si_addr = (void *) address;		force_sig_info(SIGSEGV, &si, current);		return;	}no_context:	if (!user_mode(regs)) {		fix = search_exception_table(regs->iaoq[0]);		if (fix) {			if (fix->skip & 1) 				regs->gr[8] = -EFAULT;			if (fix->skip & 2)				regs->gr[9] = 0;			regs->iaoq[0] += ((fix->skip) & ~3);			/*			 * NOTE: In some cases the faulting instruction			 * may be in the delay slot of a branch. We			 * don't want to take the branch, so we don't			 * increment iaoq[1], instead we set it to be			 * iaoq[0]+4, and clear the B bit in the PSW			 */			regs->iaoq[1] = regs->iaoq[0] + 4;			regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */			return;		}	}	parisc_terminate("Bad Address (null pointer deref?)",regs,code,address);  out_of_memory:	up_read(&mm->mmap_sem);	printk("VM: killing process %s\n", current->comm);	if (user_mode(regs))		do_exit(SIGKILL);	goto no_context;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -