📄 multi_arith.h
字号:
fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]); fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]); fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]); fp_addx96(dest, temp); fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]); fp_addx96(dest, temp);}extern inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src, struct fp_ext *div){ union fp_mant128 tmp; union fp_mant64 tmp64; unsigned long *mantp = dest->m32; unsigned long fix, rem, first, dummy; int i; /* the algorithm below requires dest to be smaller than div, but both have the high bit set */ if (src->mant.m64 >= div->mant.m64) { fp_sub64(src->mant, div->mant); *mantp = 1; } else *mantp = 0; mantp++; /* basic idea behind this algorithm: we can't divide two 64bit numbers (AB/CD) directly, but we can calculate AB/C0, but this means this quotient is off by C0/CD, so we have to multiply the first result to fix the result, after that we have nearly the correct result and only a few corrections are needed. */ /* C0/CD can be precalculated, but it's an 64bit division again, but we can make it a bit easier, by dividing first through C so we get 10/1D and now only a single shift and the value fits into 32bit. */ fix = 0x80000000; dummy = div->mant.m32[1] / div->mant.m32[0] + 1; dummy = (dummy >> 1) | fix; fp_div64(fix, dummy, fix, 0, dummy); fix--; for (i = 0; i < 3; i++, mantp++) { if (src->mant.m32[0] == div->mant.m32[0]) { fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]); fp_mul64(*mantp, dummy, first, fix); *mantp += fix; } else { fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]); fp_mul64(*mantp, dummy, first, fix); } fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp); fp_add64(tmp.m32[0], tmp.m32[1], 0, rem); tmp.m32[2] = 0; fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]); fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]); src->mant.m32[0] = tmp.m32[1]; src->mant.m32[1] = tmp.m32[2]; while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) { src->mant.m32[0] = tmp.m32[1]; src->mant.m32[1] = tmp.m32[2]; *mantp += 1; } }}#if 0extern inline unsigned int fp_fls128(union fp_mant128 *src){ unsigned long data; unsigned int res, off; if ((data = src->m32[0])) off = 0; else if ((data = src->m32[1])) off = 32; else if ((data = src->m32[2])) off = 64; else if ((data = src->m32[3])) off = 96; else return 128; asm ("bfffo %1{#0,#32},%0" : "=d" (res) : "dm" (data)); return res + off;}extern inline void fp_shiftmant128(union fp_mant128 *src, int shift){ unsigned long sticky; switch (shift) { case 0: return; case 1: asm volatile ("lsl.l #1,%0" : "=d" (src->m32[3]) : "0" (src->m32[3])); asm volatile ("roxl.l #1,%0" : "=d" (src->m32[2]) : "0" (src->m32[2])); asm volatile ("roxl.l #1,%0" : "=d" (src->m32[1]) : "0" (src->m32[1])); asm volatile ("roxl.l #1,%0" : "=d" (src->m32[0]) : "0" (src->m32[0])); return; case 2 ... 31: src->m32[0] = (src->m32[0] << shift) | (src->m32[1] >> (32 - shift)); src->m32[1] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift)); src->m32[2] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift)); src->m32[3] = (src->m32[3] << shift); return; case 32 ... 63: shift -= 32; src->m32[0] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift)); src->m32[1] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift)); src->m32[2] = (src->m32[3] << shift); src->m32[3] = 0; return; case 64 ... 95: shift -= 64; src->m32[0] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift)); src->m32[1] = (src->m32[3] << shift); src->m32[2] = src->m32[3] = 0; return; case 96 ... 127: shift -= 96; src->m32[0] = (src->m32[3] << shift); src->m32[1] = src->m32[2] = src->m32[3] = 0; return; case -31 ... -1: shift = -shift; sticky = 0; if (src->m32[3] << (32 - shift)) sticky = 1; src->m32[3] = (src->m32[3] >> shift) | (src->m32[2] << (32 - shift)) | sticky; src->m32[2] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift)); src->m32[1] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)); src->m32[0] = (src->m32[0] >> shift); return; case -63 ... -32: shift = -shift - 32; sticky = 0; if ((src->m32[2] << (32 - shift)) || src->m32[3]) sticky = 1; src->m32[3] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift)) | sticky; src->m32[2] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)); src->m32[1] = (src->m32[0] >> shift); src->m32[0] = 0; return; case -95 ... -64: shift = -shift - 64; sticky = 0; if ((src->m32[1] << (32 - shift)) || src->m32[2] || src->m32[3]) sticky = 1; src->m32[3] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)) | sticky; src->m32[2] = (src->m32[0] >> shift); src->m32[1] = src->m32[0] = 0; return; case -127 ... -96: shift = -shift - 96; sticky = 0; if ((src->m32[0] << (32 - shift)) || src->m32[1] || src->m32[2] || src->m32[3]) sticky = 1; src->m32[3] = (src->m32[0] >> shift) | sticky; src->m32[2] = src->m32[1] = src->m32[0] = 0; return; } if (shift < 0 && (src->m32[0] || src->m32[1] || src->m32[2] || src->m32[3])) src->m32[3] = 1; else src->m32[3] = 0; src->m32[2] = 0; src->m32[1] = 0; src->m32[0] = 0;}#endifextern inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src, int shift){ unsigned long tmp; switch (shift) { case 0: dest->mant.m64 = src->m64[0]; dest->lowmant = src->m32[2] >> 24; if (src->m32[3] || (src->m32[2] << 8)) dest->lowmant |= 1; break; case 1: asm volatile ("lsl.l #1,%0" : "=d" (tmp) : "0" (src->m32[2])); asm volatile ("roxl.l #1,%0" : "=d" (dest->mant.m32[1]) : "0" (src->m32[1])); asm volatile ("roxl.l #1,%0" : "=d" (dest->mant.m32[0]) : "0" (src->m32[0])); dest->lowmant = tmp >> 24; if (src->m32[3] || (tmp << 8)) dest->lowmant |= 1; break; case 31: asm volatile ("lsr.l #1,%1; roxr.l #1,%0" : "=d" (dest->mant.m32[0]) : "d" (src->m32[0]), "0" (src->m32[1])); asm volatile ("roxr.l #1,%0" : "=d" (dest->mant.m32[1]) : "0" (src->m32[2])); asm volatile ("roxr.l #1,%0" : "=d" (tmp) : "0" (src->m32[3])); dest->lowmant = tmp >> 24; if (src->m32[3] << 7) dest->lowmant |= 1; break; case 32: dest->mant.m32[0] = src->m32[1]; dest->mant.m32[1] = src->m32[2]; dest->lowmant = src->m32[3] >> 24; if (src->m32[3] << 8) dest->lowmant |= 1; break; }}#if 0 /* old code... */extern inline int fls(unsigned int a){ int r; asm volatile ("bfffo %1{#0,#32},%0" : "=d" (r) : "md" (a)); return r;}/* fls = "find last set" (cf. ffs(3)) */extern inline int fls128(const int128 a){ if (a[MSW128]) return fls(a[MSW128]); if (a[NMSW128]) return fls(a[NMSW128]) + 32; /* XXX: it probably never gets beyond this point in actual use, but that's indicative of a more general problem in the algorithm (i.e. as per the actual 68881 implementation, we really only need at most 67 bits of precision [plus overflow]) so I'm not going to fix it. */ if (a[NLSW128]) return fls(a[NLSW128]) + 64; if (a[LSW128]) return fls(a[LSW128]) + 96; else return -1;}extern inline int zerop128(const int128 a){ return !(a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]);}extern inline int nonzerop128(const int128 a){ return (a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]);}/* Addition and subtraction *//* Do these in "pure" assembly, because "extended" asm is unmanageable here */extern inline void add128(const int128 a, int128 b){ /* rotating carry flags */ unsigned int carry[2]; carry[0] = a[LSW128] > (0xffffffff - b[LSW128]); b[LSW128] += a[LSW128]; carry[1] = a[NLSW128] > (0xffffffff - b[NLSW128] - carry[0]); b[NLSW128] = a[NLSW128] + b[NLSW128] + carry[0]; carry[0] = a[NMSW128] > (0xffffffff - b[NMSW128] - carry[1]); b[NMSW128] = a[NMSW128] + b[NMSW128] + carry[1]; b[MSW128] = a[MSW128] + b[MSW128] + carry[0];}/* Note: assembler semantics: "b -= a" */extern inline void sub128(const int128 a, int128 b){ /* rotating borrow flags */ unsigned int borrow[2]; borrow[0] = b[LSW128] < a[LSW128]; b[LSW128] -= a[LSW128]; borrow[1] = b[NLSW128] < a[NLSW128] + borrow[0]; b[NLSW128] = b[NLSW128] - a[NLSW128] - borrow[0]; borrow[0] = b[NMSW128] < a[NMSW128] + borrow[1]; b[NMSW128] = b[NMSW128] - a[NMSW128] - borrow[1]; b[MSW128] = b[MSW128] - a[MSW128] - borrow[0];}/* Poor man's 64-bit expanding multiply */extern inline void mul64(unsigned long long a, unsigned long long b, int128 c){ unsigned long long acc; int128 acc128; zero128(acc128); zero128(c); /* first the low words */ if (LO_WORD(a) && LO_WORD(b)) { acc = (long long) LO_WORD(a) * LO_WORD(b); c[NLSW128] = HI_WORD(acc); c[LSW128] = LO_WORD(acc); } /* Next the high words */ if (HI_WORD(a) && HI_WORD(b)) { acc = (long long) HI_WORD(a) * HI_WORD(b); c[MSW128] = HI_WORD(acc); c[NMSW128] = LO_WORD(acc); } /* The middle words */ if (LO_WORD(a) && HI_WORD(b)) { acc = (long long) LO_WORD(a) * HI_WORD(b); acc128[NMSW128] = HI_WORD(acc); acc128[NLSW128] = LO_WORD(acc); add128(acc128, c); } /* The first and last words */ if (HI_WORD(a) && LO_WORD(b)) { acc = (long long) HI_WORD(a) * LO_WORD(b); acc128[NMSW128] = HI_WORD(acc); acc128[NLSW128] = LO_WORD(acc); add128(acc128, c); }}/* Note: unsigned */extern inline int cmp128(int128 a, int128 b){ if (a[MSW128] < b[MSW128]) return -1; if (a[MSW128] > b[MSW128]) return 1; if (a[NMSW128] < b[NMSW128]) return -1; if (a[NMSW128] > b[NMSW128]) return 1; if (a[NLSW128] < b[NLSW128]) return -1; if (a[NLSW128] > b[NLSW128]) return 1; return (signed) a[LSW128] - b[LSW128];}inline void div128(int128 a, int128 b, int128 c){ int128 mask; /* Algorithm: Shift the divisor until it's at least as big as the dividend, keeping track of the position to which we've shifted it, i.e. the power of 2 which we've multiplied it by. Then, for this power of 2 (the mask), and every one smaller than it, subtract the mask from the dividend and add it to the quotient until the dividend is smaller than the raised divisor. At this point, divide the dividend and the mask by 2 (i.e. shift one place to the right). Lather, rinse, and repeat, until there are no more powers of 2 left. */ /* FIXME: needless to say, there's room for improvement here too. */ /* Shift up */ /* XXX: since it just has to be "at least as big", we can probably eliminate this horribly wasteful loop. I will have to prove this first, though */ set128(0, 0, 0, 1, mask); while (cmp128(b, a) < 0 && !btsthi128(b)) { lslone128(b); lslone128(mask); } /* Shift down */ zero128(c); do { if (cmp128(a, b) >= 0) { sub128(b, a); add128(mask, c); } lsrone128(mask); lsrone128(b); } while (nonzerop128(mask)); /* The remainder is in a... */}#endif#endif /* MULTI_ARITH_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -