📄 5_1_1.htm
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0053)http://www.math.sjtu.edu.cn/mathematica教程/5.1.1.htm -->
<HTML><HEAD><TITLE></TITLE>
<META http-equiv=Content-Type content="text/html; charset=gb2312">
<META content="MSHTML 6.00.2900.2802" name=GENERATOR>
<META content=FrontPage.Editor.Document name=ProgId></HEAD>
<BODY background=5_1_1.files/0532.jpg topMargin=0>
<TABLE borderColor=#c0c0c0 borderColorDark=#008080 width="102%" bgColor=#c0c0c0
borderColorLight=#c0c0c0 background=5_1_1.files/0713.jpg border=1>
<TBODY>
<TR>
<TD width="100%"><B><FONT
color=#ff0000>5.1极限
<A href="http://www.math.sjtu.edu.cn/mathematica教程/index.htm"><IMG
height=61 src="5_1_1.files/0009.gif" width=65
border=0></A></FONT></B></TD></TR></TBODY></TABLE><FONT color=#ff0000> </FONT>
<P><FONT lang=ZH-CN face=宋体 color=#008000
size=2>Mathematica计算极限的命令是Limit它的使用方法主要有</FONT></P>
<DIV align=center>
<CENTER>
<TABLE width=493 background=5_1_1.files/0522.gif border=1>
<TBODY>
<TR>
<TD width=277>
<P><FONT lang=ZH-CN face=宋体 color=#0000ff
size=2>Limit[expr,x->x0]</FONT></P></TD>
<TD width=200>
<P><FONT lang=ZH-CN face=宋体 color=#0000ff
size=2>当x趋向于x0时求expr的极限</FONT></P></TD></TR>
<TR>
<TD width=277>
<P><FONT lang=ZH-CN face=宋体 color=#0000ff
size=2>Limit[expr,x->x0,Direction->1]</FONT></P></TD>
<TD width=200>
<P><FONT lang=ZH-CN face=宋体 color=#0000ff
size=2>当x趋向于x0时求expr的左极限</FONT></P></TD></TR>
<TR>
<TD width=277>
<P><FONT lang=ZH-CN face=宋体 color=#0000ff
size=2>Limit[expr,x->x0,Direction->-1]</FONT></P></TD>
<TD width=200>
<P><FONT lang=ZH-CN face=宋体 color=#0000ff
size=2>当x趋向于x0时求expr的右极限</FONT></P></TD></TR></TBODY></TABLE></CENTER></DIV>
<P><FONT color=#008000 size=2><FONT lang=ZH-CN
face=宋体>趋向的点可以是常数,也可以是</FONT>+<FONT lang=ZH-CN face=宋体 color=#008000
size=2>∞,</FONT>-<FONT lang=ZH-CN face=宋体 color=#008000 size=2>∞</FONT> <FONT
lang=ZH-CN face=宋体>例如 </FONT></FONT></P>
<P><FONT color=#008000 size=2>1</FONT><FONT lang=ZH-CN face=宋体 color=#008000
size=2>.求</FONT><FONT lang=ZH-CN face=宋体 size=2><IMG height=46
src="5_1_1.files/Image92.gif" width=82></P>
<P align=center><IMG height=113 src="5_1_1.files/Image93.gif"
width=408></P></FONT>
<P><FONT color=#008000 size=2>2</FONT><FONT lang=ZH-CN face=宋体 color=#008000
size=2>.求</FONT><FONT lang=ZH-CN face=宋体 size=2><IMG height=44
src="5_1_1.files/Image94.gif" width=68></P>
<P align=center><IMG height=130 src="5_1_1.files/Image95.gif"
width=429></P></FONT>
<P><FONT color=#008000 size=2>3</FONT><FONT lang=ZH-CN face=宋体 color=#008000
size=2>.求</FONT><FONT lang=ZH-CN face=宋体 size=2><IMG height=45
src="5_1_1.files/Image96.gif" width=60></P>
<P align=center><IMG height=130 src="5_1_1.files/Image97.gif"
width=429></P></FONT>
<P align=right><A
href="http://www.math.sjtu.edu.cn/mathematica教程/4.5.1.htm"><IMG height=15
src="5_1_1.files/0171.gif" width=20 border=0></A> <A
href="http://www.math.sjtu.edu.cn/mathematica教程/5.2.1.htm"><IMG height=15
src="5_1_1.files/0173.gif" width=20 border=0></A></P></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -