📄 xmlencoder.java
字号:
/*
* @(#)XMLEncoder.java 1.33 03/12/19
*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package flow.graph.gui.graph.encoder;
import java.beans.Encoder;
import java.beans.Expression;
import java.beans.Introspector;
import java.beans.Statement;
import java.beans.XMLDecoder;
import java.io.*;
import java.util.*;
import java.lang.reflect.*;
/**
* The <code>XMLEncoder</code> class is a complementary alternative to
* the <code>ObjectOutputStream</code> and can used to generate
* a textual representation of a <em>JavaBean</em> in the same
* way that the <code>ObjectOutputStream</code> can
* be used to create binary representation of <code>Serializable</code>
* objects. For example, the following fragment can be used to create
* a textual representation the supplied <em>JavaBean</em>
* and all its properties:
* <pre>
* XMLEncoder e = new XMLEncoder(
* new BufferedOutputStream(
* new FileOutputStream("Test.xml")));
* e.writeObject(new JButton("Hello, world"));
* e.close();
* </pre>
* Despite the similarity of their APIs, the <code>XMLEncoder</code>
* class is exclusively designed for the purpose of archiving graphs
* of <em>JavaBean</em>s as textual representations of their public
* properties. Like Java source files, documents written this way
* have a natural immunity to changes in the implementations of the classes
* involved. The <code>ObjectOutputStream</code> continues to be recommended
* for interprocess communication and general purpose serialization.
* <p>
* The <code>XMLEncoder</code> class provides a default denotation for
* <em>JavaBean</em>s in which they are represented as XML documents
* complying with version 1.0 of the XML specification and the
* UTF-8 character encoding of the Unicode/ISO 10646 character set.
* The XML documents produced by the <code>XMLEncoder</code> class are:
* <ul>
* <li>
* <em>Portable and version resilient</em>: they have no dependencies
* on the private implementation of any class and so, like Java source
* files, they may be exchanged between environments which may have
* different versions of some of the classes and between VMs from
* different vendors.
* <li>
* <em>Structurally compact</em>: The <code>XMLEncoder</code> class
* uses a <em>redundancy elimination</em> algorithm internally so that the
* default values of a Bean's properties are not written to the stream.
* <li>
* <em>Fault tolerant</em>: Non-structural errors in the file,
* caused either by damage to the file or by API changes
* made to classes in an archive remain localized
* so that a reader can report the error and continue to load the parts
* of the document which were not affected by the error.
* </ul>
* <p>
* Below is an example of an XML archive containing
* some user interface components from the <em>swing</em> toolkit:
* <pre>
* <?xml version="1.0" encoding="UTF-8"?>
* <java version="1.0" class="java.beans.XMLDecoder">
* <object class="javax.swing.JFrame">
* <void property="name">
* <string>frame1</string>
* </void>
* <void property="bounds">
* <object class="java.awt.Rectangle">
* <int>0</int>
* <int>0</int>
* <int>200</int>
* <int>200</int>
* </object>
* </void>
* <void property="contentPane">
* <void method="add">
* <object class="javax.swing.JButton">
* <void property="label">
* <string>Hello</string>
* </void>
* </object>
* </void>
* </void>
* <void property="visible">
* <boolean>true</boolean>
* </void>
* </object>
* </java>
* </pre>
* The XML syntax uses the following conventions:
* <ul>
* <li>
* Each element represents a method call.
* <li>
* The "object" tag denotes an <em>expression</em> whose value is
* to be used as the argument to the enclosing element.
* <li>
* The "void" tag denotes a <em>statement</em> which will
* be executed, but whose result will not be used as an
* argument to the enclosing method.
* <li>
* Elements which contain elements use those elements as arguments,
* unless they have the tag: "void".
* <li>
* The name of the method is denoted by the "method" attribute.
* <li>
* XML's standard "id" and "idref" attributes are used to make
* references to previous expressions - so as to deal with
* circularities in the object graph.
* <li>
* The "class" attribute is used to specify the target of a static
* method or constructor explicitly; its value being the fully
* qualified name of the class.
* <li>
* Elements with the "void" tag are executed using
* the outer context as the target if no target is defined
* by a "class" attribute.
* <li>
* Java's String class is treated specially and is
* written <string>Hello, world</string> where
* the characters of the string are converted to bytes
* using the UTF-8 character encoding.
* </ul>
* <p>
* Although all object graphs may be written using just these three
* tags, the following definitions are included so that common
* data structures can be expressed more concisely:
* <p>
* <ul>
* <li>
* The default method name is "new".
* <li>
* A reference to a java class is written in the form
* <class>javax.swing.JButton</class>.
* <li>
* Instances of the wrapper classes for Java's primitive types are written
* using the name of the primitive type as the tag. For example, an
* instance of the <code>Integer</code> class could be written:
* <int>123</int>. Note that the <code>XMLEncoder</code> class
* uses Java's reflection package in which the conversion between
* Java's primitive types and their associated "wrapper classes"
* is handled internally. The API for the <code>XMLEncoder</code> class
* itself deals only with <code>Object</code>s.
* <li>
* In an element representing a nullary method whose name
* starts with "get", the "method" attribute is replaced
* with a "property" attribute whose value is given by removing
* the "get" prefix and decapitalizing the result.
* <li>
* In an element representing a monadic method whose name
* starts with "set", the "method" attribute is replaced
* with a "property" attribute whose value is given by removing
* the "set" prefix and decapitalizing the result.
* <li>
* In an element representing a method named "get" taking one
* integer argument, the "method" attribute is replaced
* with an "index" attribute whose value the value of the
* first argument.
* <li>
* In an element representing a method named "set" taking two arguments,
* the first of which is an integer, the "method" attribute is replaced
* with an "index" attribute whose value the value of the
* first argument.
* <li>
* A reference to an array is written using the "array"
* tag. The "class" and "length" attributes specify the
* sub-type of the array and its length respectively.
* </ul>
*
*<p>
* For more information you might also want to check out
* <a
href="http://java.sun.com/products/jfc/tsc/articles/persistence4">Using XMLEncoder</a>,
* an article in <em>The Swing Connection.</em>
* @see XMLDecoder
* @see java.io.ObjectOutputStream
*
* @since 1.4
*
* @version 1.33 12/19/03
* @author Philip Milne
*/
public class XMLEncoder extends Encoder {
private static String encoding = "gb2312";
private OutputStream out;
private Object owner;
private int indentation = 0;
private boolean internal = false;
private Map valueToExpression;
private Map targetToStatementList;
private boolean preambleWritten = false;
private NameGenerator nameGenerator;
private class ValueData {
public int refs = 0;
public boolean marked = false; // Marked -> refs > 0 unless ref was a target.
public String name = null;
public Expression exp = null;
}
/**
* Creates a new output stream for sending <em>JavaBeans</em>
* to the stream <code>out</code> using an XML encoding.
*
* @param out The stream to which the XML representation of
* the objects will be sent.
*
* @see XMLDecoder#XMLDecoder(InputStream)
*/
public XMLEncoder(OutputStream out) {
this.out = out;
valueToExpression = new IdentityHashMap();
targetToStatementList = new IdentityHashMap();
nameGenerator = new NameGenerator();
}
/**
* Sets the owner of this encoder to <code>owner</code>.
*
* @param owner The owner of this encoder.
*
* @see #getOwner
*/
public void setOwner(Object owner) {
this.owner = owner;
writeExpression(new Expression(this, "getOwner", new Object[0]));
}
/**
* Gets the owner of this encoder.
*
* @return The owner of this encoder.
*
* @see #setOwner
*/
public Object getOwner() {
return owner;
}
/**
* Write an XML representation of the specified object to the output.
*
* @param o The object to be written to the stream.
*
* @see XMLDecoder#readObject
*/
public void writeObject(Object o) {
if (internal) {
super.writeObject(o);
}
else {
writeStatement(new Statement(this, "writeObject", new Object[]{o}));
}
}
private Vector statementList(Object target) {
Vector list = (Vector)targetToStatementList.get(target);
if (list != null) {
return list;
}
list = new Vector();
targetToStatementList.put(target, list);
return list;
}
private void mark(Object o, boolean isArgument) {
if (o == null || o == this) {
return;
}
ValueData d = getValueData(o);
Expression exp = d.exp;
// Do not mark liternal strings. Other strings, which might,
// for example, come from resource bundles should still be marked.
if (o.getClass() == String.class && exp == null) {
return;
}
// Bump the reference counts of all arguments
if (isArgument) {
d.refs++;
}
if (d.marked) {
return;
}
d.marked = true;
Object target = exp.getTarget();
if (!(target instanceof Class)) {
statementList(target).add(exp);
// Pending: Why does the reference count need to
// be incremented here?
d.refs++;
}
mark(exp);
}
private void mark(Statement stm) {
Object[] args = stm.getArguments();
for (int i = 0; i < args.length; i++) {
Object arg = args[i];
mark(arg, true);
}
mark(stm.getTarget(), false);
}
/**
* Records the Statement so that the Encoder will
* produce the actual output when the stream is flushed.
* <P>
* This method should only be invoked within the context
* of initializing a persistence delegate.
*
* @param oldStm The statement that will be written
* to the stream.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -