⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gsl_sf_lambert.h

📁 this ia a cppp code file including SIFT and other algrithms based in opcv
💻 H
字号:
/* specfunc/gsl_sf_lambert.h *  * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *//* Author:  G. Jungman */#ifndef __GSL_SF_LAMBERT_H__#define __GSL_SF_LAMBERT_H__#include "gsl_sf_result.h"#include "gsl_types.h"#undef __BEGIN_DECLS#undef __END_DECLS#ifdef __cplusplus# define __BEGIN_DECLS extern "C" {# define __END_DECLS }#else# define __BEGIN_DECLS /* empty */# define __END_DECLS /* empty */#endif__BEGIN_DECLS/* Lambert's Function W_0(x) * * W_0(x) is the principal branch of the * implicit function defined by W e^W = x. * * -1/E < x < \infty * * exceptions: GSL_EMAXITER; */GSL_EXPORT int     gsl_sf_lambert_W0_e(double x, gsl_sf_result * result);GSL_EXPORT double  gsl_sf_lambert_W0(double x);/* Lambert's Function W_{-1}(x) * * W_{-1}(x) is the second real branch of the * implicit function defined by W e^W = x. * It agrees with W_0(x) when x >= 0. * * -1/E < x < \infty * * exceptions: GSL_MAXITER; */GSL_EXPORT int     gsl_sf_lambert_Wm1_e(double x, gsl_sf_result * result);GSL_EXPORT double  gsl_sf_lambert_Wm1(double x);__END_DECLS#endif /* __GSL_SF_LAMBERT_H__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -