⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sift.c

📁 this ia a cppp code file including SIFT and other algrithms based in opcv
💻 C
📖 第 1 页 / 共 3 页
字号:
/*Functions for detecting SIFT image features.For more information, refer to:Lowe, D.  Distinctive image features from scale-invariant keypoints.<EM>International Journal of Computer Vision, 60</EM>, 2 (2004),pp.91--110.
Copyright (C) 2006  Rob Hess <hess@eecs.oregonstate.edu>

Note: The SIFT algorithm is patented in the United States and cannot be
used in commercial products without a license from the University of
British Columbia.  For more information, refer to the file LICENSE.ubc
that accompanied this distribution.

@version 1.1.1-20070330*/#include "sift.h"#include "imgfeatures.h"#include "utils.h"#include "cxcore.h"#include "cv.h"/************************* Local Function Prototypes *************************/IplImage* create_init_img( IplImage*, int, double );IplImage* convert_to_gray32( IplImage* );IplImage*** build_gauss_pyr( IplImage*, int, int, double );IplImage* downsample( IplImage* );IplImage*** build_dog_pyr( IplImage***, int, int );CvSeq* scale_space_extrema( IplImage***, int, int, double, int, CvMemStorage*);int is_extremum( IplImage***, int, int, int, int );struct feature* interp_extremum( IplImage***, int, int, int, int, int, double);void interp_step( IplImage***, int, int, int, int, double*, double*, double* );CvMat* deriv_3D( IplImage***, int, int, int, int );CvMat* hessian_3D( IplImage***, int, int, int, int );double interp_contr( IplImage***, int, int, int, int, double, double, double );struct feature* new_feature( void );int is_too_edge_like( IplImage*, int, int, int );void calc_feature_scales( CvSeq*, double, int );void adjust_for_img_dbl( CvSeq* );void calc_feature_oris( CvSeq*, IplImage*** );double* ori_hist( IplImage*, int, int, int, int, double );int calc_grad_mag_ori( IplImage*, int, int, double*, double* );void smooth_ori_hist( double*, int );double dominant_ori( double*, int );void add_good_ori_features( CvSeq*, double*, int, double, struct feature* );struct feature* clone_feature( struct feature* );void compute_descriptors( CvSeq*, IplImage***, int, int );double*** descr_hist( IplImage*, int, int, double, double, int, int );void interp_hist_entry( double***, double, double, double, double, int, int);void hist_to_descr( double***, int, int, struct feature* );void normalize_descr( struct feature* );int feature_cmp( void*, void*, void* );void release_descr_hist( double****, int );void release_pyr( IplImage****, int, int );/*********************** Functions prototyped in sift.h **********************//**Finds SIFT features in an image using default parameter values.  Alldetected features are stored in the array pointed to by \a feat.@param img the image in which to detect features@param feat a pointer to an array in which to store detected features@return Returns the number of features stored in \a feat or -1 on failure@see _sift_features()*/int sift_features( IplImage* img, struct feature** feat ){	return _sift_features( img, feat, SIFT_INTVLS, SIFT_SIGMA, SIFT_CONTR_THR,							SIFT_CURV_THR, SIFT_IMG_DBL, SIFT_DESCR_WIDTH,							SIFT_DESCR_HIST_BINS );}/**Finds SIFT features in an image using user-specified parameter values.  Alldetected features are stored in the array pointed to by \a feat.@param img the image in which to detect features@param fea a pointer to an array in which to store detected features@param intvls the number of intervals sampled per octave of scale space@param sigma the amount of Gaussian smoothing applied to each image level	before building the scale space representation for an octave@param cont_thr a threshold on the value of the scale space function	\f$\left|D(\hat{x})\right|\f$, where \f$\hat{x}\f$ is a vector specifying	feature location and scale, used to reject unstable features;  assumes	pixel values in the range [0, 1]@param curv_thr threshold on a feature's ratio of principle curvatures	used to reject features that are too edge-like@param img_dbl should be 1 if image doubling prior to scale space	construction is desired or 0 if not@param descr_width the width, \f$n\f$, of the \f$n \times n\f$ array of	orientation histograms used to compute a feature's descriptor@param descr_hist_bins the number of orientations in each of the	histograms in the array used to compute a feature's descriptor@return Returns the number of keypoints stored in \a feat or -1 on failure@see sift_keypoints()*/int _sift_features( IplImage* img, struct feature** feat, int intvls,				   double sigma, double contr_thr, int curv_thr,				   int img_dbl, int descr_width, int descr_hist_bins ){	IplImage* init_img;	IplImage*** gauss_pyr, *** dog_pyr;	CvMemStorage* storage;	CvSeq* features;	int octvs, i, n = 0;	/* check arguments */	if( ! img )		fatal_error( "NULL pointer error, %s, line %d",  __FILE__, __LINE__ );	if( ! feat )		fatal_error( "NULL pointer error, %s, line %d",  __FILE__, __LINE__ );	/* build scale space pyramid; smallest dimension of top level is ~4 pixels */	init_img = create_init_img( img, img_dbl, sigma );	octvs = log( MIN( init_img->width, init_img->height ) ) / log(2) - 2;	gauss_pyr = build_gauss_pyr( init_img, octvs, intvls, sigma );	dog_pyr = build_dog_pyr( gauss_pyr, octvs, intvls );	storage = cvCreateMemStorage( 0 );	features = scale_space_extrema( dog_pyr, octvs, intvls, contr_thr,		curv_thr, storage );	calc_feature_scales( features, sigma, intvls );	if( img_dbl )		adjust_for_img_dbl( features );	calc_feature_oris( features, gauss_pyr );	compute_descriptors( features, gauss_pyr, descr_width, descr_hist_bins );	/* sort features by decreasing scale and move from CvSeq to array */	cvSeqSort( features, (CvCmpFunc)feature_cmp, NULL );	n = features->total;	*feat = calloc( n, sizeof(struct feature) );	*feat = cvCvtSeqToArray( features, *feat, CV_WHOLE_SEQ );	for( i = 0; i < n; i++ )	{		free( (*feat)[i].feature_data );		(*feat)[i].feature_data = NULL;	}	cvReleaseMemStorage( &storage );	cvReleaseImage( &init_img );	release_pyr( &gauss_pyr, octvs, intvls + 3 );	release_pyr( &dog_pyr, octvs, intvls + 2 );	return n;}/************************ Functions prototyped here **************************//*Converts an image to 8-bit grayscale and Gaussian-smooths it.  The image isoptionally doubled in size prior to smoothing.@param img input image@param img_dbl if true, image is doubled in size prior to smoothing@param sigma total std of Gaussian smoothing*/IplImage* create_init_img( IplImage* img, int img_dbl, double sigma ){	IplImage* gray, * dbl;	float sig_diff;	gray = convert_to_gray32( img );	if( img_dbl )	{		sig_diff = sqrt( sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4 );		dbl = cvCreateImage( cvSize( img->width*2, img->height*2 ),			IPL_DEPTH_32F, 1 );		cvResize( gray, dbl, CV_INTER_CUBIC );		cvSmooth( dbl, dbl, CV_GAUSSIAN, 0, 0, sig_diff, sig_diff );		cvReleaseImage( &gray );		return dbl;	}	else	{		sig_diff = sqrt( sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA );		cvSmooth( gray, gray, CV_GAUSSIAN, 0, 0, sig_diff, sig_diff );		return gray;	}}/*Converts an image to 32-bit grayscale@param img a 3-channel 8-bit color (BGR) or 8-bit gray image@return Returns a 32-bit grayscale image*/IplImage* convert_to_gray32( IplImage* img ){	IplImage* gray8, * gray32;	int r, c;	gray8 = cvCreateImage( cvGetSize(img), IPL_DEPTH_8U, 1 );	gray32 = cvCreateImage( cvGetSize(img), IPL_DEPTH_32F, 1 );	if( img->nChannels == 1 )		gray8 = cvClone( img );	else		cvCvtColor( img, gray8, CV_RGB2GRAY );	cvConvertScale( gray8, gray32, 1.0 / 255.0, 0 );	cvReleaseImage( &gray8 );	return gray32;}/*Builds Gaussian scale space pyramid from an image@param base base image of the pyramid@param octvs number of octaves of scale space@param intvls number of intervals per octave@param sigma amount of Gaussian smoothing per octave@return Returns a Gaussian scale space pyramid as an octvs x (intvls + 3) array*/IplImage*** build_gauss_pyr( IplImage* base, int octvs,							int intvls, double sigma ){	IplImage*** gauss_pyr;	double* sig = calloc( intvls + 3, sizeof(double));
	double sig_total, sig_prev, k;
	int i, o;	gauss_pyr = calloc( octvs, sizeof( IplImage** ) );	for( i = 0; i < octvs; i++ )		gauss_pyr[i] = calloc( intvls + 3, sizeof( IplImage* ) );	/*		precompute Gaussian sigmas using the following formula:		\sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2	*/	sig[0] = sigma;	k = pow( 2.0, 1.0 / intvls );	for( i = 1; i < intvls + 3; i++ )	{		sig_prev = pow( k, i - 1 ) * sigma;		sig_total = sig_prev * k;		sig[i] = sqrt( sig_total * sig_total - sig_prev * sig_prev );	}	for( o = 0; o < octvs; o++ )		for( i = 0; i < intvls + 3; i++ )		{			if( o == 0  &&  i == 0 )				gauss_pyr[o][i] = cvCloneImage(base);			/* base of new octvave is halved image from end of previous octave */			else if( i == 0 )				gauss_pyr[o][i] = downsample( gauss_pyr[o-1][intvls] );			/* blur the current octave's last image to create the next one */			else			{				gauss_pyr[o][i] = cvCreateImage( cvGetSize(gauss_pyr[o][i-1]),					IPL_DEPTH_32F, 1 );				cvSmooth( gauss_pyr[o][i-1], gauss_pyr[o][i],					CV_GAUSSIAN, 0, 0, sig[i], sig[i] );			}		}	free( sig );	return gauss_pyr;}/*Downsamples an image to a quarter of its size (half in each dimension)using nearest-neighbor interpolation@param img an image@return Returns an image whose dimensions are half those of img*/IplImage* downsample( IplImage* img ){	IplImage* smaller = cvCreateImage( cvSize(img->width / 2, img->height / 2),		img->depth, img->nChannels );	cvResize( img, smaller, CV_INTER_NN );	return smaller;}/*Builds a difference of Gaussians scale space pyramid by subtracting adjacentintervals of a Gaussian pyramid@param gauss_pyr Gaussian scale-space pyramid@param octvs number of octaves of scale space@param intvls number of intervals per octave@return Returns a difference of Gaussians scale space pyramid as an	octvs x (intvls + 2) array*/IplImage*** build_dog_pyr( IplImage*** gauss_pyr, int octvs, int intvls ){	IplImage*** dog_pyr;	int i, o;	dog_pyr = calloc( octvs, sizeof( IplImage** ) );	for( i = 0; i < octvs; i++ )		dog_pyr[i] = calloc( intvls + 2, sizeof(IplImage*) );	for( o = 0; o < octvs; o++ )		for( i = 0; i < intvls + 2; i++ )		{			dog_pyr[o][i] = cvCreateImage( cvGetSize(gauss_pyr[o][i]),				IPL_DEPTH_32F, 1 );			cvSub( gauss_pyr[o][i+1], gauss_pyr[o][i], dog_pyr[o][i], NULL );		}	return dog_pyr;}/*Detects features at extrema in DoG scale space.  Bad features are discardedbased on contrast and ratio of principal curvatures.@param dog_pyr DoG scale space pyramid@param octvs octaves of scale space represented by dog_pyr@param intvls intervals per octave@param contr_thr low threshold on feature contrast@param curv_thr high threshold on feature ratio of principal curvatures@param storage memory storage in which to store detected features@return Returns an array of detected features whose scales, orientations,	and descriptors are yet to be determined.*/CvSeq* scale_space_extrema( IplImage*** dog_pyr, int octvs, int intvls,						   double contr_thr, int curv_thr,						   CvMemStorage* storage ){	CvSeq* features;	double prelim_contr_thr = 0.5 * contr_thr / intvls;	struct feature* feat;	struct detection_data* ddata;	int o, i, r, c, w, h;	features = cvCreateSeq( 0, sizeof(CvSeq), sizeof(struct feature), storage );	for( o = 0; o < octvs; o++ )		for( i = 1; i <= intvls; i++ )			for(r = SIFT_IMG_BORDER; r < dog_pyr[o][0]->height-SIFT_IMG_BORDER; r++)				for(c = SIFT_IMG_BORDER; c < dog_pyr[o][0]->width-SIFT_IMG_BORDER; c++)					/* perform preliminary check on contrast */					if( ABS( pixval32f( dog_pyr[o][i], r, c ) ) > prelim_contr_thr )						if( is_extremum( dog_pyr, o, i, r, c ) )						{							feat = interp_extremum(dog_pyr, o, i, r, c, intvls, contr_thr);							if( feat )							{								ddata = feat_detection_data( feat );								if( ! is_too_edge_like( dog_pyr[ddata->octv][ddata->intvl],									ddata->r, ddata->c, curv_thr ) )								{									cvSeqPush( features, feat );								}								else									free( ddata );								free( feat );							}						}	return features;}/*Determines whether a pixel is a scale-space extremum by comparing it to it's3x3x3 pixel neighborhood.@param dog_pyr DoG scale space pyramid@param octv pixel's scale space octave@param intvl pixel's within-octave interval@param r pixel's image row@param c pixel's image col@return Returns 1 if the specified pixel is an extremum (max or min) among	it's 3x3x3 pixel neighborhood.*/int is_extremum( IplImage*** dog_pyr, int octv, int intvl, int r, int c ){	float val = pixval32f( dog_pyr[octv][intvl], r, c );	int i, j, k;	/* check for maximum */	if( val > 0 )	{		for( i = -1; i <= 1; i++ )			for( j = -1; j <= 1; j++ )				for( k = -1; k <= 1; k++ )					if( val < pixval32f( dog_pyr[octv][intvl+i], r + j, c + k ) )						return 0;	}	/* check for minimum */	else	{		for( i = -1; i <= 1; i++ )			for( j = -1; j <= 1; j++ )				for( k = -1; k <= 1; k++ )					if( val > pixval32f( dog_pyr[octv][intvl+i], r + j, c + k ) )						return 0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -