📄 sift.c
字号:
/*Functions for detecting SIFT image features.For more information, refer to:Lowe, D. Distinctive image features from scale-invariant keypoints.<EM>International Journal of Computer Vision, 60</EM>, 2 (2004),pp.91--110.
Copyright (C) 2006 Rob Hess <hess@eecs.oregonstate.edu>
Note: The SIFT algorithm is patented in the United States and cannot be
used in commercial products without a license from the University of
British Columbia. For more information, refer to the file LICENSE.ubc
that accompanied this distribution.
@version 1.1.1-20070330*/#include "sift.h"#include "imgfeatures.h"#include "utils.h"#include "cxcore.h"#include "cv.h"/************************* Local Function Prototypes *************************/IplImage* create_init_img( IplImage*, int, double );IplImage* convert_to_gray32( IplImage* );IplImage*** build_gauss_pyr( IplImage*, int, int, double );IplImage* downsample( IplImage* );IplImage*** build_dog_pyr( IplImage***, int, int );CvSeq* scale_space_extrema( IplImage***, int, int, double, int, CvMemStorage*);int is_extremum( IplImage***, int, int, int, int );struct feature* interp_extremum( IplImage***, int, int, int, int, int, double);void interp_step( IplImage***, int, int, int, int, double*, double*, double* );CvMat* deriv_3D( IplImage***, int, int, int, int );CvMat* hessian_3D( IplImage***, int, int, int, int );double interp_contr( IplImage***, int, int, int, int, double, double, double );struct feature* new_feature( void );int is_too_edge_like( IplImage*, int, int, int );void calc_feature_scales( CvSeq*, double, int );void adjust_for_img_dbl( CvSeq* );void calc_feature_oris( CvSeq*, IplImage*** );double* ori_hist( IplImage*, int, int, int, int, double );int calc_grad_mag_ori( IplImage*, int, int, double*, double* );void smooth_ori_hist( double*, int );double dominant_ori( double*, int );void add_good_ori_features( CvSeq*, double*, int, double, struct feature* );struct feature* clone_feature( struct feature* );void compute_descriptors( CvSeq*, IplImage***, int, int );double*** descr_hist( IplImage*, int, int, double, double, int, int );void interp_hist_entry( double***, double, double, double, double, int, int);void hist_to_descr( double***, int, int, struct feature* );void normalize_descr( struct feature* );int feature_cmp( void*, void*, void* );void release_descr_hist( double****, int );void release_pyr( IplImage****, int, int );/*********************** Functions prototyped in sift.h **********************//**Finds SIFT features in an image using default parameter values. Alldetected features are stored in the array pointed to by \a feat.@param img the image in which to detect features@param feat a pointer to an array in which to store detected features@return Returns the number of features stored in \a feat or -1 on failure@see _sift_features()*/int sift_features( IplImage* img, struct feature** feat ){ return _sift_features( img, feat, SIFT_INTVLS, SIFT_SIGMA, SIFT_CONTR_THR, SIFT_CURV_THR, SIFT_IMG_DBL, SIFT_DESCR_WIDTH, SIFT_DESCR_HIST_BINS );}/**Finds SIFT features in an image using user-specified parameter values. Alldetected features are stored in the array pointed to by \a feat.@param img the image in which to detect features@param fea a pointer to an array in which to store detected features@param intvls the number of intervals sampled per octave of scale space@param sigma the amount of Gaussian smoothing applied to each image level before building the scale space representation for an octave@param cont_thr a threshold on the value of the scale space function \f$\left|D(\hat{x})\right|\f$, where \f$\hat{x}\f$ is a vector specifying feature location and scale, used to reject unstable features; assumes pixel values in the range [0, 1]@param curv_thr threshold on a feature's ratio of principle curvatures used to reject features that are too edge-like@param img_dbl should be 1 if image doubling prior to scale space construction is desired or 0 if not@param descr_width the width, \f$n\f$, of the \f$n \times n\f$ array of orientation histograms used to compute a feature's descriptor@param descr_hist_bins the number of orientations in each of the histograms in the array used to compute a feature's descriptor@return Returns the number of keypoints stored in \a feat or -1 on failure@see sift_keypoints()*/int _sift_features( IplImage* img, struct feature** feat, int intvls, double sigma, double contr_thr, int curv_thr, int img_dbl, int descr_width, int descr_hist_bins ){ IplImage* init_img; IplImage*** gauss_pyr, *** dog_pyr; CvMemStorage* storage; CvSeq* features; int octvs, i, n = 0; /* check arguments */ if( ! img ) fatal_error( "NULL pointer error, %s, line %d", __FILE__, __LINE__ ); if( ! feat ) fatal_error( "NULL pointer error, %s, line %d", __FILE__, __LINE__ ); /* build scale space pyramid; smallest dimension of top level is ~4 pixels */ init_img = create_init_img( img, img_dbl, sigma ); octvs = log( MIN( init_img->width, init_img->height ) ) / log(2) - 2; gauss_pyr = build_gauss_pyr( init_img, octvs, intvls, sigma ); dog_pyr = build_dog_pyr( gauss_pyr, octvs, intvls ); storage = cvCreateMemStorage( 0 ); features = scale_space_extrema( dog_pyr, octvs, intvls, contr_thr, curv_thr, storage ); calc_feature_scales( features, sigma, intvls ); if( img_dbl ) adjust_for_img_dbl( features ); calc_feature_oris( features, gauss_pyr ); compute_descriptors( features, gauss_pyr, descr_width, descr_hist_bins ); /* sort features by decreasing scale and move from CvSeq to array */ cvSeqSort( features, (CvCmpFunc)feature_cmp, NULL ); n = features->total; *feat = calloc( n, sizeof(struct feature) ); *feat = cvCvtSeqToArray( features, *feat, CV_WHOLE_SEQ ); for( i = 0; i < n; i++ ) { free( (*feat)[i].feature_data ); (*feat)[i].feature_data = NULL; } cvReleaseMemStorage( &storage ); cvReleaseImage( &init_img ); release_pyr( &gauss_pyr, octvs, intvls + 3 ); release_pyr( &dog_pyr, octvs, intvls + 2 ); return n;}/************************ Functions prototyped here **************************//*Converts an image to 8-bit grayscale and Gaussian-smooths it. The image isoptionally doubled in size prior to smoothing.@param img input image@param img_dbl if true, image is doubled in size prior to smoothing@param sigma total std of Gaussian smoothing*/IplImage* create_init_img( IplImage* img, int img_dbl, double sigma ){ IplImage* gray, * dbl; float sig_diff; gray = convert_to_gray32( img ); if( img_dbl ) { sig_diff = sqrt( sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4 ); dbl = cvCreateImage( cvSize( img->width*2, img->height*2 ), IPL_DEPTH_32F, 1 ); cvResize( gray, dbl, CV_INTER_CUBIC ); cvSmooth( dbl, dbl, CV_GAUSSIAN, 0, 0, sig_diff, sig_diff ); cvReleaseImage( &gray ); return dbl; } else { sig_diff = sqrt( sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA ); cvSmooth( gray, gray, CV_GAUSSIAN, 0, 0, sig_diff, sig_diff ); return gray; }}/*Converts an image to 32-bit grayscale@param img a 3-channel 8-bit color (BGR) or 8-bit gray image@return Returns a 32-bit grayscale image*/IplImage* convert_to_gray32( IplImage* img ){ IplImage* gray8, * gray32; int r, c; gray8 = cvCreateImage( cvGetSize(img), IPL_DEPTH_8U, 1 ); gray32 = cvCreateImage( cvGetSize(img), IPL_DEPTH_32F, 1 ); if( img->nChannels == 1 ) gray8 = cvClone( img ); else cvCvtColor( img, gray8, CV_RGB2GRAY ); cvConvertScale( gray8, gray32, 1.0 / 255.0, 0 ); cvReleaseImage( &gray8 ); return gray32;}/*Builds Gaussian scale space pyramid from an image@param base base image of the pyramid@param octvs number of octaves of scale space@param intvls number of intervals per octave@param sigma amount of Gaussian smoothing per octave@return Returns a Gaussian scale space pyramid as an octvs x (intvls + 3) array*/IplImage*** build_gauss_pyr( IplImage* base, int octvs, int intvls, double sigma ){ IplImage*** gauss_pyr; double* sig = calloc( intvls + 3, sizeof(double));
double sig_total, sig_prev, k;
int i, o; gauss_pyr = calloc( octvs, sizeof( IplImage** ) ); for( i = 0; i < octvs; i++ ) gauss_pyr[i] = calloc( intvls + 3, sizeof( IplImage* ) ); /* precompute Gaussian sigmas using the following formula: \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2 */ sig[0] = sigma; k = pow( 2.0, 1.0 / intvls ); for( i = 1; i < intvls + 3; i++ ) { sig_prev = pow( k, i - 1 ) * sigma; sig_total = sig_prev * k; sig[i] = sqrt( sig_total * sig_total - sig_prev * sig_prev ); } for( o = 0; o < octvs; o++ ) for( i = 0; i < intvls + 3; i++ ) { if( o == 0 && i == 0 ) gauss_pyr[o][i] = cvCloneImage(base); /* base of new octvave is halved image from end of previous octave */ else if( i == 0 ) gauss_pyr[o][i] = downsample( gauss_pyr[o-1][intvls] ); /* blur the current octave's last image to create the next one */ else { gauss_pyr[o][i] = cvCreateImage( cvGetSize(gauss_pyr[o][i-1]), IPL_DEPTH_32F, 1 ); cvSmooth( gauss_pyr[o][i-1], gauss_pyr[o][i], CV_GAUSSIAN, 0, 0, sig[i], sig[i] ); } } free( sig ); return gauss_pyr;}/*Downsamples an image to a quarter of its size (half in each dimension)using nearest-neighbor interpolation@param img an image@return Returns an image whose dimensions are half those of img*/IplImage* downsample( IplImage* img ){ IplImage* smaller = cvCreateImage( cvSize(img->width / 2, img->height / 2), img->depth, img->nChannels ); cvResize( img, smaller, CV_INTER_NN ); return smaller;}/*Builds a difference of Gaussians scale space pyramid by subtracting adjacentintervals of a Gaussian pyramid@param gauss_pyr Gaussian scale-space pyramid@param octvs number of octaves of scale space@param intvls number of intervals per octave@return Returns a difference of Gaussians scale space pyramid as an octvs x (intvls + 2) array*/IplImage*** build_dog_pyr( IplImage*** gauss_pyr, int octvs, int intvls ){ IplImage*** dog_pyr; int i, o; dog_pyr = calloc( octvs, sizeof( IplImage** ) ); for( i = 0; i < octvs; i++ ) dog_pyr[i] = calloc( intvls + 2, sizeof(IplImage*) ); for( o = 0; o < octvs; o++ ) for( i = 0; i < intvls + 2; i++ ) { dog_pyr[o][i] = cvCreateImage( cvGetSize(gauss_pyr[o][i]), IPL_DEPTH_32F, 1 ); cvSub( gauss_pyr[o][i+1], gauss_pyr[o][i], dog_pyr[o][i], NULL ); } return dog_pyr;}/*Detects features at extrema in DoG scale space. Bad features are discardedbased on contrast and ratio of principal curvatures.@param dog_pyr DoG scale space pyramid@param octvs octaves of scale space represented by dog_pyr@param intvls intervals per octave@param contr_thr low threshold on feature contrast@param curv_thr high threshold on feature ratio of principal curvatures@param storage memory storage in which to store detected features@return Returns an array of detected features whose scales, orientations, and descriptors are yet to be determined.*/CvSeq* scale_space_extrema( IplImage*** dog_pyr, int octvs, int intvls, double contr_thr, int curv_thr, CvMemStorage* storage ){ CvSeq* features; double prelim_contr_thr = 0.5 * contr_thr / intvls; struct feature* feat; struct detection_data* ddata; int o, i, r, c, w, h; features = cvCreateSeq( 0, sizeof(CvSeq), sizeof(struct feature), storage ); for( o = 0; o < octvs; o++ ) for( i = 1; i <= intvls; i++ ) for(r = SIFT_IMG_BORDER; r < dog_pyr[o][0]->height-SIFT_IMG_BORDER; r++) for(c = SIFT_IMG_BORDER; c < dog_pyr[o][0]->width-SIFT_IMG_BORDER; c++) /* perform preliminary check on contrast */ if( ABS( pixval32f( dog_pyr[o][i], r, c ) ) > prelim_contr_thr ) if( is_extremum( dog_pyr, o, i, r, c ) ) { feat = interp_extremum(dog_pyr, o, i, r, c, intvls, contr_thr); if( feat ) { ddata = feat_detection_data( feat ); if( ! is_too_edge_like( dog_pyr[ddata->octv][ddata->intvl], ddata->r, ddata->c, curv_thr ) ) { cvSeqPush( features, feat ); } else free( ddata ); free( feat ); } } return features;}/*Determines whether a pixel is a scale-space extremum by comparing it to it's3x3x3 pixel neighborhood.@param dog_pyr DoG scale space pyramid@param octv pixel's scale space octave@param intvl pixel's within-octave interval@param r pixel's image row@param c pixel's image col@return Returns 1 if the specified pixel is an extremum (max or min) among it's 3x3x3 pixel neighborhood.*/int is_extremum( IplImage*** dog_pyr, int octv, int intvl, int r, int c ){ float val = pixval32f( dog_pyr[octv][intvl], r, c ); int i, j, k; /* check for maximum */ if( val > 0 ) { for( i = -1; i <= 1; i++ ) for( j = -1; j <= 1; j++ ) for( k = -1; k <= 1; k++ ) if( val < pixval32f( dog_pyr[octv][intvl+i], r + j, c + k ) ) return 0; } /* check for minimum */ else { for( i = -1; i <= 1; i++ ) for( j = -1; j <= 1; j++ ) for( k = -1; k <= 1; k++ ) if( val > pixval32f( dog_pyr[octv][intvl+i], r + j, c + k ) ) return 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -