📄 timechromosome.cpp
字号:
/*File timechromosome.cpp*//*Copyright 2002, 2003 Lalescu Liviu.This file is part of FET.FET is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 2 of the License, or(at your option) any later version.FET is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with FET; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA*/#include <iostream>using namespace std;#include "genetictimetable_defs.h"#include "timechromosome.h"#include "rules.h"#include "timeconstraint.h"int better(Rules& r, TimeChromosome& c1, TimeChromosome& c2){ //returns true if c1 is better than c2 //Here the order is important, you have to compute firstly the hard fitness, then the soft fitness int hf1=c1.hardFitness(r); int sf1=c1.softFitness(r); int hf2=c2.hardFitness(r); int sf2=c2.softFitness(r); return better(hf1, sf1, hf2, sf2);}int better(int hf1, int sf1, int hf2, int sf2){ return hf1<hf2 || hf1==hf2 && sf1<sf2;}//critical function here - must be optimized for speedvoid TimeChromosome::copy(Rules& r, TimeChromosome& c){ this->_hardFitness=c._hardFitness; this->_softFitness=c._softFitness; assert(r.internalStructureComputed); for(int i=0; i<r.nInternalActivities; i++) this->times[i] = c.times[i]; //memcpy(times, c.times, r.nActivities * sizeof(times[0]));}void TimeChromosome::init(Rules& r){ assert(r.internalStructureComputed); for(int i=0; i<r.nInternalActivities; i++) this->times[i]=UNALLOCATED_TIME; this->_hardFitness=this->_softFitness=-1;}bool TimeChromosome::read(Rules& r, const QString& filename){ assert(r.initialized); QFile file(filename); if(!file.open(IO_ReadOnly)) assert(0); QTextStream tis(&file); this->read(r, tis); file.close(); return true;}bool TimeChromosome::read(Rules &r, QTextStream &tis){ assert(r.initialized); assert(r.internalStructureComputed); for(int i=0; i<r.nInternalActivities; i++){ tis>>this->times[i]; if(tis.eof()){ //The rules and the solution do not match (1) return false; } if(this->times[i]>=r.nHoursPerWeek && this->times[i]!=UNALLOCATED_TIME){ //The rules and the solution do not match (2) return false; } } this->_hardFitness=this->_softFitness=-1; return true;}void TimeChromosome::write(Rules& r, const QString &filename){ assert(r.initialized); QFile file(filename); if(!file.open(IO_WriteOnly)) assert(0); QTextStream tos(&file); this->write(r, tos); file.close();}void TimeChromosome::write(Rules& r, QTextStream &tos){ assert(r.initialized); assert(r.internalStructureComputed); for(int i=0; i<r.nInternalActivities; i++){ tos<<this->times[i]<<endl; }}void TimeChromosome::makeTimesUnallocated(Rules& r){ assert(r.initialized); assert(r.internalStructureComputed); for(int i=0; i<r.nInternalActivities; i++) this->times[i]=UNALLOCATED_TIME; this->_hardFitness=this->_softFitness=-1;}void TimeChromosome::makeTimesRandom(Rules& r){ assert(r.initialized); assert(r.internalStructureComputed); for(int i=0; i<r.nInternalActivities; i++) this->times[i] = rand()%r.nHoursPerWeek; this->_hardFitness = this->_softFitness = -1;}int TimeChromosome::hardFitness(Rules& r, QString* conflictsString){ assert(r.initialized); assert(r.internalStructureComputed); if(this->_hardFitness>=0 && conflictsString==NULL) //If you want to see the log, you have to recompute the fitness, even if it is //already computed return this->_hardFitness; //Repair the chromosome - we enter here with the assumption that //the time constraints of type ConstraintActivityPreferredTime, //ConstraintActivitiesSameTime and ConstraintActivitiesSameStartingHour //do not contradict one with each other. //I had good reasons here not to repair activities that are scheduled too late //(that is, have the hour+duration>nHoursPerDay. //The reason is that there might be a mutation by swapping 2 activities, //and I want it to consider all the variants. //I might be wrong :-) //1)preferred times for(int i=0; i<r.nInternalActivities; i++){ if(r.fixedDay[i]>=0 && r.fixedHour[i]>=0){ this->times[i] = r.fixedDay[i] + r.fixedHour[i] * r.nDaysPerWeek; } else if(r.fixedDay[i]>=0 && this->times[i]!=UNALLOCATED_TIME){ this->times[i] = r.fixedDay[i] + (this->times[i]/r.nDaysPerWeek)*r.nDaysPerWeek; } else if(r.fixedHour[i]>=0 && this->times[i]!=UNALLOCATED_TIME){ this->times[i] = (this->times[i]%r.nDaysPerWeek) + r.fixedHour[i]*r.nDaysPerWeek; } } //2)same starting day and/or hour for(int i=0; i<r.nInternalActivities; i++){ if(r.sameDay[i]>=0 && r.sameHour[i]>=0 && this->times[r.sameDay[i]]!=UNALLOCATED_TIME && this->times[r.sameHour[i]]!=UNALLOCATED_TIME){ int d = this->times[r.sameDay[i]] % r.nDaysPerWeek; int h = this->times[r.sameHour[i]] / r.nDaysPerWeek; this->times[i] = d + h * r.nDaysPerWeek; if(r.fixedDay[i]>=0) assert(r.fixedDay[i]==d); if(r.fixedHour[i]>=0) assert(r.fixedHour[i]==h); } if(r.sameDay[i]>=0 && this->times[i]!=UNALLOCATED_SPACE && this->times[r.sameDay[i]]!=UNALLOCATED_TIME){ int d = this->times[r.sameDay[i]] % r.nDaysPerWeek; int h = this->times[i] / r.nDaysPerWeek; this->times[i] = d + h * r.nDaysPerWeek; if(r.fixedDay[i]>=0) assert(r.fixedDay[i]==d); } if(r.sameHour[i]>=0 && this->times[i]!=UNALLOCATED_SPACE && this->times[r.sameHour[i]]!=UNALLOCATED_TIME){ int d = this->times[i] % r.nDaysPerWeek; int h = this->times[r.sameHour[i]] / r.nDaysPerWeek; this->times[i] = d + h * r.nDaysPerWeek; if(r.fixedHour[i]>=0) assert(r.fixedHour[i]==h); } } this->_hardFitness=0; //here we must not have compulsory activity preferred time nor //compulsory activities same time and/or hour //Also, here I compute soft fitness (for faster results, //I do not want to pass again through the constraints) this->_softFitness=0; for(int i=0; i<r.nInternalTimeConstraints; i++) if(r.internalTimeConstraintsList[i]->compulsory==true) this->_hardFitness += r.internalTimeConstraintsList[i]->fitness(*this, r, conflictsString); else //not logged here this->_softFitness += r.internalTimeConstraintsList[i]->fitness(*this, r, NULL); return this->_hardFitness;}int TimeChromosome::softFitness(Rules& r, QString* conflictsString){ assert(r.initialized); assert(r.internalStructureComputed); if(this->_softFitness>=0 && conflictsString==NULL) //If you want to see the log, you have to recompute the fitness, even if it is //already computed return this->_softFitness; assert(this->_softFitness>=0); //I must have calculated this before - this is just a check //I prefer to compute the soft fitness also in the hard fitness calculation, //to avoid double passing through the constraints this->_softFitness=0; for(int i=0; i<r.nInternalTimeConstraints; i++) if(r.internalTimeConstraintsList[i]->compulsory==false) this->_softFitness += r.internalTimeConstraintsList[i]->fitness(*this, r, conflictsString); return this->_softFitness;}//critical function here - must be optimized for speedvoid TimeChromosome::crossover(Rules& r, TimeChromosome& c1, TimeChromosome& c2){ assert(r.internalStructureComputed); int q=rand()%(r.nInternalActivities+1); int i; for(i=0; i<q; i++) this->times[i]=c1.times[i]; //memcpy(times, c1.times, q*sizeof(times[0])); for(; i<r.nInternalActivities; i++) this->times[i]=c2.times[i]; //memcpy(times+q, c2.times+q, (r.nActivities-q)*sizeof(times[0])); this->_hardFitness = this->_softFitness = -1;}//critical function here - must be optimized for speedvoid TimeChromosome::mutate1(Rules& r){ int p,q,k; assert(r.internalStructureComputed); p=rand()%r.nInternalActivities; do{ q=rand()%r.nInternalActivities; }while(p==q); //I think this is the fastest solution //because, suppose we have 10% of allowed values for q. Then, the probability //that this step is performed 10 times is (0.9)^10=0.34... //obviusly, 10% is very little, generally we deal with more than 90% allowed values k=this->times[p]; this->times[p]=this->times[q]; this->times[q]=k; //exchange the values this->_hardFitness = this->_softFitness = -1;}//critical function here - must be optimized for speedvoid TimeChromosome::mutate2(Rules& r){ assert(r.internalStructureComputed); int p,k; p=rand()%r.nInternalActivities; k=rand()%r.nHoursPerWeek; this->times[p]=k; this->_hardFitness = this->_softFitness = -1;}//critical function here - must be optimized for speedint TimeChromosome::getTeachersMatrix(Rules& r, int16 a[MAX_TEACHERS][MAX_DAYS_PER_WEEK][MAX_HOURS_PER_DAY]){ assert(r.initialized); assert(r.internalStructureComputed); int conflicts=0; int i; for(i=0; i<r.nInternalTeachers; i++) for(int j=0; j<r.nDaysPerWeek; j++) for(int k=0; k<r.nHoursPerDay; k++) a[i][j][k]=0; for(i=0; i<r.nInternalActivities; i++) if(this->times[i]!=UNALLOCATED_TIME) { int hour = this->times[i] / r.nDaysPerWeek; int day = this->times[i] % r.nDaysPerWeek; Activity* act=&r.internalActivitiesList[i]; for(int dd=0; dd<act->duration && hour+dd<r.nHoursPerDay; dd++) for(int it=0; it<act->nTeachers; it++){ int tch=act->teachers[it]; int tmp=a[tch][day][hour+dd]; if(act->parity==PARITY_WEEKLY){ conflicts += tmp<2 ? tmp : 2; a[tch][day][hour+dd]+=2; } else{ assert(act->parity==PARITY_BIWEEKLY); conflicts += tmp<2 ? 0 : 1; a[tch][day][hour+dd]++; } } } return conflicts;}//critical function here - must be optimized for speedint TimeChromosome::getSubgroupsMatrix(Rules& r, int16 a[MAX_TOTAL_SUBGROUPS][MAX_DAYS_PER_WEEK][MAX_HOURS_PER_DAY]){ assert(r.initialized); assert(r.internalStructureComputed); int conflicts=0; int i; for(i=0; i<r.nInternalSubgroups; i++) for(int j=0; j<r.nDaysPerWeek; j++) for(int k=0; k<r.nHoursPerDay; k++) a[i][j][k]=0; for(i=0; i<r.nInternalActivities; i++) if(this->times[i]!=UNALLOCATED_TIME){ int hour=this->times[i]/r.nDaysPerWeek; int day=this->times[i]%r.nDaysPerWeek; Activity* act = &r.internalActivitiesList[i]; for(int dd=0; dd < act->duration && hour+dd < r.nHoursPerDay; dd++) for(int isg=0; isg < act->nSubgroups; isg++){ //isg => index subgroup int sg = act->subgroups[isg]; //sg => subgroup int tmp=a[sg][day][hour+dd]; if(act->parity == PARITY_WEEKLY){ conflicts += tmp<2 ? tmp : 2; a[sg][day][hour+dd]+=2; } else{ assert(act->parity == PARITY_BIWEEKLY); conflicts += tmp<2 ? 0 : 1; a[sg][day][hour+dd]++; } } } return conflicts;}//The following 2 functions (GetTeachersTimetable & GetSubgroupsTimetable)//are very similar to the above 2 ones (GetTeachersMatrix & GetSubgroupsMatrix)void TimeChromosome::getTeachersTimetable(Rules& r, int16 a1[MAX_TEACHERS][MAX_DAYS_PER_WEEK][MAX_HOURS_PER_DAY],int16 a2[MAX_TEACHERS][MAX_DAYS_PER_WEEK][MAX_HOURS_PER_DAY]){ //assert(HFitness()==0); //This is only for perfect solutions, that do not have any non-satisfied hard constrains assert(r.initialized); assert(r.internalStructureComputed); int i, j, k; for(i=0; i<r.nInternalTeachers; i++) for(j=0; j<r.nDaysPerWeek; j++) for(k=0; k<r.nHoursPerDay; k++) a1[i][j][k]=a2[i][j][k]=UNALLOCATED_ACTIVITY; Activity *act; for(i=0; i<r.nInternalActivities; i++) if(this->times[i]!=UNALLOCATED_TIME) { act=&r.internalActivitiesList[i]; int hour=this->times[i]/r.nDaysPerWeek; int day=this->times[i]%r.nDaysPerWeek; for(int dd=0; dd < act->duration && hour+dd < r.nHoursPerDay; dd++) for(int ti=0; ti<act->nTeachers; ti++){ int tch = act->teachers[ti]; //teacher index if(a1[tch][day][hour+dd]==UNALLOCATED_ACTIVITY) a1[tch][day][hour+dd]=i; else a2[tch][day][hour+dd]=i; } }}void TimeChromosome::getSubgroupsTimetable(Rules& r, int16 a1[MAX_TOTAL_SUBGROUPS][MAX_DAYS_PER_WEEK][MAX_HOURS_PER_DAY],int16 a2[MAX_TOTAL_SUBGROUPS][MAX_DAYS_PER_WEEK][MAX_HOURS_PER_DAY]){ //assert(HFitness()==0); //This is only for perfect solutions, that do not have any non-satisfied hard constrains assert(r.initialized); assert(r.internalStructureComputed); int i, j, k; for(i=0; i<r.nInternalSubgroups; i++) for(j=0; j<r.nDaysPerWeek; j++) for(k=0; k<r.nHoursPerDay; k++) a1[i][j][k]=a2[i][j][k]=UNALLOCATED_ACTIVITY; Activity *act; for(i=0; i<r.nInternalActivities; i++) if(this->times[i]!=UNALLOCATED_TIME) { act=&r.internalActivitiesList[i]; int hour=this->times[i]/r.nDaysPerWeek; int day=this->times[i]%r.nDaysPerWeek; for(int dd=0; dd < act->duration && hour+dd < r.nHoursPerDay; dd++){ for(int isg=0; isg < act->nSubgroups; isg++){ //isg -> index subgroup int sg = act->subgroups[isg]; //sg -> subgroup if(a1[sg][day][hour+dd]==UNALLOCATED_ACTIVITY) a1[sg][day][hour+dd]=i; else a2[sg][day][hour+dd]=i; } } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -