📄 s3c44b0中断.txt
字号:
3Bootloader的工作
完整的Bootloader引导流程可描述如下:
硬件初始化阶段一
◎ 硬件初始化
◎ 复制二级中断异常矢量表
◎ 初始化各种处理器模式
◎ 复制RO和RW,清零ZI (跳转到C代码入口函数)
硬件初始化阶段二
◎ 初始化本阶段使用到的硬件设备;
◎ 建立人机界面
◎ 实现映像文件的下载和烧录工具
◎ 实现映像文件的加载和运行工具
下面对上述各步骤进行逐一说明,并对与uClinux相关的内容详细加以说明。
2.3.1 硬件初始化
板子上电或复位后,程序从位于地址0x0的Reset Exception Vector处开始执行,因此需要在这里放置Bootloader的第一条指令:b ResetHandler,跳转到标号为ResetHandler处进行第一阶段的硬件初始化,主要内容为:关Watchdog Timer,关中断,初始化PLL和时钟,初始化存储器控制器。比较重要的是PLL的输出频率要计算正确,ARMSYS中把它设置为64MHz;这实际上就是处理器的工作主频,这个时间参数在第二阶段计算SDRAM的刷新计数值和UART的波特率等参数时还要用到。
2.3.2建立二级异常中断矢量表
异常中断矢量表(Exception Vector Table)是Bootloader与uClinux内核发生联系关键的地方之一。即使uClinux内核已经得到处理器的控制权运行,一旦发生中断,处理器还是会自动跳转到从0x0地址开始的第一级异常中断矢量表中的某个表项(依据于中断类型)处读取指令运行。
在编写Bootloader时,地址0x0处的一级异常中断矢量表只需简单地包含向二级异常中断矢量表的跳转指令就可以。这样,就能够正确地将发生的事件交给uClinux的中断处理程序来处理。对于uClinux内核,它在RAM空间中基地址为0xc000000处建立了自己的二级异常中断矢量表,因此,Bootloader的第一级异常中断矢量表如下所示:
b ResetHandler ;Reset Handler
ldr pc,=0x0c000004 ;Undefined Instruction Handler
ldr pc,=0x0c000008 ;Software Interrupt Handler
ldr pc,=0x0c00000c ;Prefetch Abort Handler
ldr pc,=0x0c000010 ;Data Abort Handler
b .
ldr pc,=0x0c000018 ;IRQ Handler
ldr pc,=0x0c00001c ;FIQ Handler
LTORG
如果在Bootloader执行的全过程中都不必响应中断,那么上面的设置已能满足要求。但在我们的ARMSYS上提供了USB下载器,需要用到中断,那么Bootloader必须在同样的地址(0xc000000)处配置自己的二级异常中断矢量表,以便同uClinux兼容。这张表事先存放在 Flash Memory里,引导过程中由Bootloader将其复制到RAM地址0x0C000000:
存放矢量表:
;IRQ ==the program put this phrase to 0xc000000
ExceptionHanlderBegin
b .
ldr pc, MyHandleUndef ; HandlerUndef
ldr pc, MyHandleSWI ; HandlerSWI
ldr pc, MyHandlePabort ; HandlerPabort
ldr pc, MyHandleDabort ; HandlerDAbort
b . ; HandlerReserved
ldr pc, MyHandleIRQ ; HandlerIRQ
ldr pc, MyHandleFIQ ; HandlerFIQ
MyHandleUndef DCD HandleUndef ;reserve a word(32bit)
MyHandleSWI DCD HandleSWI
MyHandlePabort DCD HandlePabort
MyHandleDabort DCD HandleDabort
MyHandleIRQ DCD HandleIRQ
MyHandleFIQ DCD HandleFIQ
ExceptionHanlderEnd
建立二级矢量表:
;****************************************************
;* Setup IRQ handler *
;****************************************************
ldr r0,=(_IRQ_BASEADDRESS + 0x100)
ldr r2,=_IRQ_BASEADDRESS
add r3,r0, #0x100
0
CMP r0, r3
STRCC r2, [r0], #4;cc:Carry clear;save R2 to R0 address, R0 =R0+ 4。
BCC %B0
ldr r1,=_IRQ_BASEADDRESS
ldr r0,=ExceptionHanlderBegin ;if there isn't 'subs pc,lr,#4' at 0x18, 0x1c
ldr r3,=ExceptionHanlderEnd
0
CMP r0, r3 ;put the vector table at _IRQ_BASEADDRESS(0xc000000)
LDRCC r2, [r0], #4
STRCC r2, [r1], #4
BCC %B0
ldr r1,=DIsrIRQ;put the IRQ judge program at _IRQ_BASEADDRESS+0x80(0xc000080)
ldr r0,=IsrIRQ ;if there isn't 'subs pc,lr,#4' at 0x18, 0x1c
ldr r3,=IsrIRQEnd
0
CMP r0, r3
LDRCC r2, [r0], #4
STRCC r2, [r1], #4
BCC %B0
ldr r1, =MyHandleIRQ ;MyHandleIRQ point to DIsrIRQ
ldr r0, =ExceptionHanlderBegin
ldr r4, =_IRQ_BASEADDRESS;
sub r0, r1, r0
add r0, r0,r4
ldr r1, =DIsrIRQ
str r1, [r0]
定义Handlexxx:
^ (_IRQ_BASEADDRESS)
HandleReset # 4
HandleUndef # 4
HandleSWI # 4
HandlePabort # 4
HandleDabort # 4
HandleReserved # 4
HandleIRQ # 4
HandleFIQ # 4
^ (_IRQ_BASEADDRESS+0x80)
DIsrIRQ # 4
;IntVectorTable
^ (_IRQ_BASEADDRESS+0x100)
HandleADC # 4
HandleRTC # 4
HandleUTXD1 # 4
HandleUTXD0 # 4
HandleSIO # 4
HandleIIC # 4
HandleURXD1 # 4
HandleURXD0 # 4
HandleTIMER5 # 4
HandleTIMER4 # 4
HandleTIMER3 # 4
HandleTIMER2 # 4
HandleTIMER1 # 4
HandleTIMER0 # 4
HandleUERR01 # 4
HandleWDT # 4
HandleBDMA1 # 4
HandleBDMA0 # 4
HandleZDMA1 # 4
HandleZDMA0 # 4
HandleTICK # 4
HandleEINT4567 # 4
HandleEINT3 # 4
HandleEINT2 # 4
HandleEINT1 # 4
HandleEINT0 # 4
将异常中断矢量重构到SDRAM,这样的好处就是可以在其它的功能程序内对中断处理程序的地址任意赋值。为此,我们在44b.h文件中定义:
/* ISR */
#define pISR_RESET (*(unsigned *)(_IRQ_BASEADDRESS+0x0))
#define pISR_UNDEF (*(unsigned *)(_IRQ_BASEADDRESS+0x4))
#define pISR_SWI (*(unsigned *)(_IRQ_BASEADDRESS+0x8))
#define pISR_PABORT (*(unsigned *)(_IRQ_BASEADDRESS+0xc))
#define pISR_DABORT (*(unsigned *)(_IRQ_BASEADDRESS+0x10))
#define pISR_RESERVED (*(unsigned *)(_IRQ_BASEADDRESS+0x14))
#define pISR_IRQ (*(unsigned *)(_IRQ_BASEADDRESS+0x18))
#define pISR_FIQ (*(unsigned *)(_IRQ_BASEADDRESS+0x1c))
#define pISR_ADC (*(unsigned *)(_IRQ_BASEADDRESS+0x100))//0x20))
#define pISR_RTC (*(unsigned *)(_IRQ_BASEADDRESS+0x104))//0x24))
#define pISR_UTXD1 (*(unsigned *)(_IRQ_BASEADDRESS+0x108))//0x28))
#define pISR_UTXD0 (*(unsigned *)(_IRQ_BASEADDRESS+0x10c))//0x2c))
#define pISR_SIO (*(unsigned *)(_IRQ_BASEADDRESS+0x110))//0x30))
#define pISR_IIC (*(unsigned *)(_IRQ_BASEADDRESS+0x114))//0x34))
#define pISR_URXD1 (*(unsigned *)(_IRQ_BASEADDRESS+0x118))//0x38))
#define pISR_URXD0 (*(unsigned *)(_IRQ_BASEADDRESS+0x11c))//0x3c))
#define pISR_TIMER5 (*(unsigned *)(_IRQ_BASEADDRESS+0x120))//0x40))
#define pISR_TIMER4 (*(unsigned *)(_IRQ_BASEADDRESS+0x124))//0x44))
#define pISR_TIMER3 (*(unsigned *)(_IRQ_BASEADDRESS+0x128))//0x48))
#define pISR_TIMER2 (*(unsigned *)(_IRQ_BASEADDRESS+0x12c))//0x4c))
#define pISR_TIMER1 (*(unsigned *)(_IRQ_BASEADDRESS+0x130))//0x50))
#define pISR_TIMER0 (*(unsigned *)(_IRQ_BASEADDRESS+0x134))//0x54))
#define pISR_UERR01 (*(unsigned *)(_IRQ_BASEADDRESS+0x138))//0x58))
#define pISR_WDT (*(unsigned *)(_IRQ_BASEADDRESS+0x13c))//0x5c))
#define pISR_BDMA1 (*(unsigned *)(_IRQ_BASEADDRESS+0x140))//0x60))
#define pISR_BDMA0 (*(unsigned *)(_IRQ_BASEADDRESS+0x144))//0x64))
#define pISR_ZDMA1 (*(unsigned *)(_IRQ_BASEADDRESS+0x148))//0x68))
#define pISR_ZDMA0 (*(unsigned *)(_IRQ_BASEADDRESS+0x14c))//0x6c))
#define pISR_TICK (*(unsigned *)(_IRQ_BASEADDRESS+0x150))//0x70))
#define pISR_EINT4567 (*(unsigned *)(_IRQ_BASEADDRESS+0x154))//0x74))
#define pISR_EINT3 (*(unsigned *)(_IRQ_BASEADDRESS+0x158))//0x78))
#define pISR_EINT2 (*(unsigned *)(_IRQ_BASEADDRESS+0x15c))//0x7c))
#define pISR_EINT1 (*(unsigned *)(_IRQ_BASEADDRESS+0x160))//0x80))
#define pISR_EINT0 (*(unsigned *)(_IRQ_BASEADDRESS+0x164))//0x84))
例如,我们要使用到Exint4567中断,定义好中断处理程序Meint4567Isr()后,仅需要一条语句:
pISR_EINT4567=(int)MEint4567Isr;
就能使中断发生后正确跳转到我们编写的处理程序上。
2.3.3 初始化各种处理器模式
ARM7TDMI支持7种Operation Mode:User,FIQ,IRQ,Supervisor,Abort,System和Undefined。Bootloader需要依次切换到每种模式,初始化其程序状态寄存器(SPSR)和堆栈指针(SP)。
2.3.4 复制RO和RW,清零ZI
一个ARM由RO,RW和ZI三个段组成,其中RO为代码段,RW是已初始化的全局变量,ZI是未初始化的全局变量(对于GNU工具,对应的概念是 TEXT,DATA和BSS)。Bootloader要将RW段复制到RAM中,并将ZI段清零。编译器使用下列符号来记录各段的起始和结束地址:
|Image$$RO$$Base| :RO段起始地址
|Image$$RO$$Limit| :RO段结束地址加1
|Image$$RW$$Base| :RW段起始地址
|Image$$RW$$Limit| :ZI段结束地址加1
|Image$$ZI$$Base| :ZI段起始地址
|Image$$ZI$$Limit| :ZI段结束地址加1
需要注意的是,这些标号的值是根据链接器中设置的中ro-base和rw-base的设置来计算的,我们的Bootloader的对应设置是:ro-base = 0xc000000, rw-base = 0xc5f0000。
完成这个步骤后,第一阶段的硬件初始化就完成了。
BL Main
跳转到C语言程序,开始第二阶段的初始化和系统引导。
2.3.5 C语言中的硬件初始化
继续对硬件进行初始化,主要包括对以下设备的初始化:GPIO,Cache,Interrupt Controller,Watchdog Timer和UARTs。S3C44B0X处理器内置data/instruction合一的8KB Cache,且允许按地址范围设置两个Non-Cacheable区间。合理的配置是打开对RAM区间的Cache,关闭对其它地址区间(非存储器设备,I/O设备 )的Cache。所有硬件初始化完毕之后,开中断。
2.3.6 建立人机界面
引导过程的最后一步是在串行终端上建立人机界面,并等待用户输入命令。若接收到用户输入,则显示菜单模式或命令行模式的交互界面,等待用户进一步的命令。这里就不对此详细讨论
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -