📄 calculatekery.m
字号:
function yy=calculatekery(X,Y,Xt)
[inds, dists] = findneib(X,Xt,50);
X=X(inds,:);Y=Y(inds,:);
% %%%%%%%%%%%%%%%%%%%%%%%%%%kpls
n=size(X,1);nt=size(Xt,1);
mn=mean(Y);
Y=Y-ones(n,1)*mn;
K=Kernel(X,'G',2.5,0);
K_t=Kernel_Test(X,Xt,'G',2.5,0);
%%%% centralization K, K_t, (centralization of Y and Yt already done above)
M=eye(n)-ones(n,n)/n;
Mt=ones(nt,n)/n;
K_t = (K_t - Mt*K)*M;
K=M*K*M;
%mn=mean(Y);
%%%% number of used latent vectors (componets)
Fac=6;
[B,T]=KerNIPALS(K,Y,Fac,0); %%% a) NIPALS based KPLS
%[B,T] = KerPLS_eig(K,Y,Fac,0); %%% b) K*Y*Y'*t = a *t based KPLS
% [B,T,U]=KerSIMPLS1(K,Y,Fac); %%% c) Kernel SIMPLS for single output (this equals a) and b))
%%%% prediction (train / test)
%Y_hat=T*(T'*Y); %%% this is an alternative way for predictions on training set
% Y_hat=K*B + mn ;
yy=K_t*B + mn ;
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% [P_X,P_Xt,W,D]=KPCA(X,Xt,10,'G',1,0);
% [Y_hat,Yt_hat,B]=KPCR(P_X,P_Xt,D,Y,[]);
% yy=Yt_hat;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -