⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 example2.cpp

📁 利用这个模板可以分析基因表达数据
💻 CPP
字号:
//// This file contains some example code, which may be used to call // the matrix & vector algorithms amd the least squares classes.//// This code is not necessarily meant to be useful in itself, but is provided as // an example of how the class may be used.//// Copyright (C) 1999 Software Engineering Group, Crystallography Department,// Birkbeck College, Malet Street, London WC1E 7HX, U.K.// (d.moss@mail.cryst.bbk.ac.uk or m.williams@biochemistry.ucl.ac.uk)// // This library is free software; you can redistribute it and/or modify it // under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2 of the License, or (at your// Handle) any later version.  This library is distributed in the hope// that it will be useful, but WITHOUT ANY WARRANTY; without even the// implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR// PURPOSE.  See the GNU Library General Public License for more details.// You should have received a copy of the GNU Library General Public// License along with this library; if not, write to the Free Software// Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.///////////////////////////////////////////////////////////////////////////////////////// Author: Mark Williams // /////////////////////////////////////////////////////////////////////////////////////// // Brief Description of Code:// // Superimpose two molecular structures in PDB format.//// For further details of the btl_least_squares algorithms, // see the documentation for the classes./////////////////////////////////////////////////////////////////////////////////////// Standard header files#include <vector>#include <iostream>using namespace std;// BTL header files#include "btl_biomolecular_data.h"#include "btl_least_squares.h"#include "btl_matrix.h"#include "btl_numeric_vector.h"#include "btl_matrix_algorithms.h"using namespace btl;int main(int argc, char* argv[]){    if (argc != 3) {        cerr << "Usage: program_name firstPDBFile secondPDBFile" << endl;        exit(1);    }    // Create objects to represent each structure using one of the file processor classes from the BTL    // Read information from PDB files (reading only chains M and N, and the B atoms when alternatives are given)    ATOM_processor A; A.ReadFile(argv[1],"MN ",'B');    ATOM_processor B; B.ReadFile(argv[2],"MN ",'B');    // The Coords() member function of ATOM_processor returns an STL vector containing the coordinates.    // Consequently, the number of atoms in each file can be retrieved using the standard size() member function.     if (A.Coords().size() != B.Coords().size() ) {        cerr << "Number of atoms unequal" << endl;        exit(1);    }       bool long_way=false;    if(long_way){     // Do the superposition the long way in order to demonstrate the vector and matrix algorithms     // The geometric centre of each structure is declared as a BTL numeric_vector with 3 elements of    // BTL_REAL(0.0) (the default). The coordinates of the centres are calculated using the generic     // BTL centroid algorithm is in this case operating on both STL and BTL vectors.    numeric_vector<> centreA, centreB;     centroid(A.Coords().begin(), A.Coords().end(), centreA.begin());    centroid(B.Coords().begin(), B.Coords().end(), centreB.begin());    // Move protein A such that the protein centres are superimposed using the generic BTL algorithm `translate'     numeric_vector<> translation = centreB - centreA;     translate(A.Coords().begin(), A.Coords().end(), translation.begin());    // Determine and perform the rotation necessary to superimpose structures    // First calculate the Kearsley matrix and determine its eigenvalues and eigenvectors    matrix<> matfit(4,4), evector(4,4); numeric_vector<> evalue(4);    _kearsley_matrix(A.Coords().begin(), A.Coords().end(), B.Coords().begin(), B.Coords().end(), matfit.begin());        eigen_solution(matfit.begin(), matfit.end(), 4 ,evector.begin(), evalue.begin());    transpose(evector.begin(), evector.end(), 4, evector.begin());        // Then rotate A about its centre in order to effect the superposition    matrix<> rotation(3,3);    rotation_from_fit(evector.begin(),rotation.begin());    rotate(A.Coords().begin(), A.Coords().end(), rotation.begin(), centreB.begin());    }   else {    // Alternatively, and much shorter, the above steps are incorporated in a single algorithm in which the     // first protein's  coordinates are overwritten.  Here again we apply a BTL algorithm to the coordinate    // data held in STL vectors.     double rmsd = 0.0;    rmsd = lsqfit(A.Coords().begin(), A.Coords().end(), B.Coords().begin(), B.Coords().end(), rmsd);       cout << "Root mean square distance : " << rmsd << "\n";          }    // The outstream operator << is overloaded to write the contents of an ATOM_processor object in PDB format.    cout << A;		    return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -