📄 propane.fld
字号:
358.9 !Lennard-Jones coefficient epsilon/kappa [K]
1.77273976d-01 !const in Eq 19 = 5/16*(k*MW/1000/pi/Na)**0.5*1.0d12
0.1422605d+01 !dilute gas terms (Eq 27): Gt(1)
-0.179749d+00 ! Gt(2)
0.3113890422d-02 !residual terms (Eqs 26, 28-30): Et(1)
-0.2257559730d+00
0.5674370999d+02
-0.7840963643d-04
0.2291785465d-01
-0.2527939890d+01
-0.6265334654d-01
0.2518064809d+01 !Et(8)
TK2 !pointer to critical enhancement model (follows immediately)
3.98d0 !critical enhancement terms (Eqs D1-D4): X1
5.450d0
0.468067d0
1.08d0 !X4
8.117d-10 !Z
1.38054d-23 !Boltzmann's constant, k
0.0 !coeff for initial density dependence of viscosity (eq 21); Fv(1)
0.0 !Fv(2)
1.12 !Fv(3)
359.0 !Fv(4)
-14.113294896 !coefficients for residual viscosity, eqs (22 - 25)
968.22940153 !Ev(2) (the viscosity is also used in conductivity correlation)
13.686545032 !Ev(3)
-12511.628378 !Ev(4)
0.0168910864 !Ev(5)
43.527109444 !Ev(6)
7659.45434720 !Ev(7)
#ETA !viscosity model specification
VS1 pure fluid viscosity model of Vogel et al. (1998).
?LITERATURE REFERENCE \
?Vogel, E., Kuechenmeister, C., Bich, E., and Laesecke, A.,
? "Reference Correlation of the Viscosity of Propane,"
? J. Phys. Chem. Ref. Data, 27(5):947-970, 1998.
?\
?The uncertainty in viscosity varies from 0.4% in the dilute gas between
?room temperature and 600 K, to about 2.5% from 100 to 475 K up to about 30 MPa,
?and to about 4% outside this range.
?\
!end of info section
85.47 !lower temperature limit [K]
600.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
17.36 !maximum density [mol/L]
1 !number of terms associated with dilute-gas function
CI1 !pointer to reduced effective collision cross-section model
0.49748 !Lennard-Jones coefficient sigma [nm]
263.88 !Lennard-Jones coefficient epsilon/kappa [K]
1.0 1.0 !reducing parameters for T, eta
0.141824 0.50d0 !Chapman-Enskog term
9 !number of terms for initial density dependence
263.88 0.0741445 !reducing parameters for T (= eps/k), etaB2 (= 0.6022137*sigma**3)
-19.572881d0 0.0 !coeff, power in T* = T/(eps/k)
219.73999d0 -0.25
-1015.3226d0 -0.5
2471.01251d0 -0.75
-3375.1717d0 -1.0
2491.6597d0 -1.25
-787.26086d0 -1.5
14.085455d0 -2.5
-0.34664158d0 -5.5
2 13 1 2 0 0 !# resid terms: close-packed density; simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
369.82 5.0 1.0 !reducing parameters for T, rho, eta
0.250053938863D1 0.0 0.00 0.00 0
0.215175430074D1 0.5 0.00 0.00 0
0.359873030195D2 0.0 2.00 0.00 0
-0.180512188564D3 -1.0 2.00 0.00 0
0.877124888223D2 -2.0 2.00 0.00 0
-0.105773052525D3 0.0 3.00 0.00 0
0.205319740877D3 -1.0 3.00 0.00 0
-0.129210932610D3 -2.0 3.00 0.00 0
0.589491587759D2 0.0 4.00 0.00 0
-0.129740033100D3 -1.0 4.00 0.00 0
0.766280419971D2 -2.0 4.00 0.00 0
-0.959407868475D1 0.0 5.00 0.00 0
0.210726986598D2 -1.0 5.00 0.00 0
-0.143971968187D2 -2.0 5.00 0.00 0
-0.161688405374D4 0.0 1.00 -1.00 0
0.161688405374D4 0.0 1.00 0.00 0
1. 0.0 0.00 1.00 0
-1. 0.0 1.00 0.00 0
NUL !pointer to critical enhancement auxiliary function (none used)
#AUX !collision integral specification
CI1 collision integral model of Vogel et al. (1998).
?LITERATURE REFERENCE \
?Vogel, E., Kuechenmeister, C., Bich, E., and Laesecke, A.,
? "Reference Correlation of the Viscosity of Propane,"
? J. Phys. Chem. Ref. Data, 27(5):947-970, 1998.
?\
!end of info section
85.47 !lower temperature limit [K]
600.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
3 !number of terms
0.25104574 0 !coeff, power of Tstar
-0.47271238 1
0.060836515 3
@ETA !viscosity model specification
VS2 pure fluid viscosity model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?N.B. all temperatures on IPTS-68
?\
?The uncertainty in viscosity is 2%, except in the critical region which is 5%.
?\
!end of info section
85.47 !lower temperature limit [K]
600.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
17.36 !maximum density [mol/L]
CI2 !pointer to collision integral model
0.47 !Lennard-Jones coefficient sigma [nm]
358.9 !Lennard-Jones coefficient epsilon/kappa [K]
1.77273976d-01 !const in Eq 19 = 5/16*(k*MW/1000/pi/Na)**0.5*1.0d12
0.5 !exponent in Eq 19 for T
0.0 !coeff for initial density dependence of viscosity (eq 21); Fv(1)
0.0 !Fv(2)
1.12 !Fv(3)
359.0 !Fv(4)
-14.113294896 !coefficients for residual viscosity, eqs (22 - 25)
968.22940153 !Ev(2)
13.686545032 !Ev(3)
-12511.628378 !Ev(4)
0.0168910864 !Ev(5)
43.527109444 !Ev(6)
7659.45434720 !Ev(7)
5.0 !Ev(8)
NUL !pointer to critical enhancement auxiliary function (none used)
#AUX !collision integral specification
CI2 collision integral model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?N.B. all temperatures on IPTS-68
?\
!end of info section
85.47 !lower temperature limit [K]
600.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
9 !number of terms
-3.0328138281 !Omega (eq 20): coeffs of {(e/kT)**((4-n)/3)}
16.918880086 !N.B. there is misprint in Younglove and Ely, the exponent
-37.189364917 ! is ((4-n)/3) not ((n+2)/3)
41.288861858
-24.61592114
8.948843096
-1.8739245042
0.209661014 !N.B. wrong sign in Younglove and Ely, Table 2
-0.009657044
@TRN !transport model specification
ECS Extended Corresponding States model (R134a reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:
?\
?Aggarwal, M.C. and Springer, G.S.,
? "High temperature-high pressure thermal conductivities of ethylene and
? propane," J. Chem. Phys., 70:3948-3951, 1979.
?\
?Mann, W.B. and Dickins, B.G.,
? "The thermal conductivities of the saturated hydrocarbons in the gaseous
? state," Proc. Royal Soc. (London), Series A134:77-96, 1932.
?\
?Roder, H.M.,
? "Experimental thermal conductivity values for hydrogen, methane, ethane
? and propane," National Bureau of Standards NBSIR 84-3006, 1984.
?\
?Tufeu, R. and LeNeindre, B.,
? "Thermal conductivity of propane in the temperature range 25-305鳦 and
? pressure range 1-70 MPa," Int. J. Thermophys., 8:27-38, 1987.
?\
?Average absolute deviations of the fit from the experimental data were:\
? Aggarwal: 2.89%; Mann: 0.23%; Roder: 1.18%; Tufeu: 3.13%; Overall: 1.86%\
?\
?the Lennard-Jones parameters are taken from:
?\
?Vogel, E., Kuchenmeister, C., Bich, E., and Laesecke, A.,
? "Reference correlation of the viscosity of propane,"
? J. Phys. Chem. Ref. Data, 27:947-970, 1998.
?\
!end of info section
85.47 !lower temperature limit [K]
600.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
17.36 !maximum density [mol/L]
FEQ R134a.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.49748 !Lennard-Jones coefficient sigma [nm] for ECS method
263.88 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
2 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.0398d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
5.4024d-7 1.0 0.0 0.0
1 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
2 0 0 !number of terms in chi (t.c. shape factor): poly1,poly2,spare
0.81477d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
5.10390d-2 0.0 1.0 0.0
#STN !surface tension specification
ST1 surface tension model of Baidakov and Sulla (1985).
?LITERATURE REFERENCE \
?Baidakov, V.G. and Sulla, I.I.
? "Surface tension of propane and isobutane at near-critical temperatures,"
? Russian Journal of Physical Chemistry, 59:551-554, 1985.
?\
!end of info section
85.47 !lower temperature limit [K]
369.85 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
2 !number of terms in surface tension model
370.4 !critical temperature used by Baidakov and Sulla (dummy)
0.05666 1.265 !sigma0 and n
-0.005291 2.265
#DE !dielectric constant specification
DE1 dielectric constant model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?The uncertainty in dielectric constant is 0.05%.
?\
!end of info section
83.80 !lower temperature limit [K]
150.6633 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
369.85 1.0 1.0 !reducing parameters for t, d, and p
4 1 0 0 0 0 !number of terms in dielectric constant model
0.15562631d-1 0. 1. 0. !coef, t exp, d exp, p exp
0.77162820d-4 0. 2. 0.
-0.60399084d-5 0. 3. 0.
-0.45141181d-6 0. 1. 1.
0.51074051d-3 0. 1. 0.
#MLT !melting line specification
ML1 melting line model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
!end of info section
85.47 !lower temperature limit [K]
600.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1. 1000. !reducing temperature and pressure
2 0 0 0 0 0 !number of terms in melting line equation
-717.998787117642 0. !coefficients and exponents (extra digits required
0.238565d1 1.283 !to achieve ptp=0.169d-6 kPa)
#PS !vapor pressure equation
PS6 vapor pressure equation of Miyamoto and Watanabe (2000).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
85.48 !lower temperature limit [K]
369.825 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
369.825 4247.09 !reducing parameters
4 0 0 0 0 0 !number of terms in equation
-6.741653 2. !coefficients and exponents
1.455497 3.
-1.312986 5.
-2.111039 9.
#DL !saturated liquid density equation
DL3 saturated liquid density equation of Miyamoto and Watanabe (2000).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
85.48 !lower temperature limit [K]
369.825 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
369.825 4.9551407 !reducing parameters
4 0 0 0 0 0 !number of terms in equation
0.2758388 0.2 !coefficients and exponents
1.810924 0.4
-0.8907309 0.6
0.1273854 1.8
#DV !saturated vapor density equation
DV3 saturated vapor density equation of Miyamoto and Watanabe (2000).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
85.48 !lower temperature limit [K]
369.825 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
369.825 4.9551407 !reducing parameters
5 0 0 0 0 0 !number of terms in equation
0.5312985 0.1 !coefficients and exponents
-1.702073 0.2
-4.998449 0.8
-12.18881 2.4
-42.75035 5.8
-107.8777 13.9
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -