📄 r41.fld
字号:
R41 !short name
593-53-3 !CAS number
fluoromethane !full name
CH3F !chemical formula
HFC-41 !synonym
34.033 !molecular weight [g/mol]
129.82 !triple point temperature [K]
195.027 !normal boiling point [K]
317.28 !critical temperature [K]
5897.0 !critical pressure [kPa]
9.30 !critical density [mol/L]
0.2012 !acentric factor (calc from vapor pressure fit of McLinden)
1.851 !dipole moment [Debye]; from DIPPR: Sutter & Cole (1970), J. Chem. Phys. 52:132
IIR !default reference state
6.1 !version number
! compiled by M. McLinden, NIST Physical and Chemical Properties Division, Boulder, Colorado
! 04-17-96 MM, original version
! 08-20-96 MM, add estimate for surface tension
! 10-03-96 MM, specify no rho-dependent ECS coeff (compatibility with new model)
! 10-08-96 MM, add MBWR fit of Outcalt
! 12-06-96 MM, update MBWR to fit 120 of Outcalt (12-05-96)
! 01-31-97 MM, change pointer for ECS reference viscosity from VS3 to VS1
! 02-20-97 MM, add default reference state
! 02-26-97 MM, add version number (future use)
! 03-11-97 MM, modify ECS-transport to new format
! 06-06-97 MM, change lower limit on EOS to 135 K (convergence probs lower)
! 10-24-97 MM, read in f_int term in Eucken correlation in ECS method for t.c.
! change reference fluid EOS for ECS-transport from BWR to FEQ
! 07-02-98 MM, change lower T limit to 175 K; flaky behaviour below that
! 04-12-01 EWL, add Lemmon and Span short EOS (behaviour below 175 K is good)
! 05-11-02 MLH,added comparisons with data, LJ parameters.
#EOS !equation of state specification
BWR MBWR equation of state for R-41 of Outcalt (1996).
?LITERATURE REFERENCES \
?Outcalt, S.L., MBWR equation of state as reported in:\
?Haynes, W.M.,
? "Thermophysical properties of HCFC alternatives,"
? National Institute of Standards and Technology, Boulder, Colorado,
? Final Report for ARTI MCLR Project Number 660-50800, 1996.\
?\
?the ideal-gas contribution is based on the spectroscopic values of:\
?Chase, M.W., Davies, C.A., Downey, J.R., Frurip, D.J., McDonald, R.A., and
? Syverd, A.N.,
? "JANAF Thermochemical Tables,"
? Third Edition, J. Phys. Chem. Ref. Data, 14(suppl. 1):1-1856, 1985.\
?\
!end of info section
175.0 !lower temperature limit [K]
500.0 !upper temperature limit [K]
60000.0 !upper pressure limit [kPa]
27.1006 !maximum density [mol/L] (sat liq density at 175 K)
CPP !pointer to Cp0 model
34.033 !molecular weight [g/mol]
129.82 !triple point temperature [K]
0.32 !pressure at triple point [kPa]
29.66 !density at triple point [mol/L]
195.027 !normal boiling point temperature [K]
0.2012 !acentric factor
317.28 5897.0 9.30 !Tc [K], pc [kPa], rhoc [mol/L]
317.28 9.30 !reducing parameters [K, mol/L]
9.30 !gamma
0.08314471 !gas constant [L-bar/mol-K]
32 1 !Nterm, Ncoeff per term
-0.326441485138d-1 0.338620074694d+1 -0.831696847103d+2
0.139589938388d+5 -0.156113972752d+7 -0.165160386413d-2
0.118821153813d+1 -0.137311604695d+3 0.176999573025d+6
0.164945271187d-4 0.595329911829d-1 -0.341969857376d+2
-0.168552064750d-2 -0.758216269071d-2 -0.134800586220d+2
0.311348265418d-2 -0.651499088798d-4 0.184033192190d-1
-0.281459127843d-3 -0.186344956951d+6 0.110422095705d+8
-0.147526754027d+4 0.261603025982d+8 -0.744431617418d+1
0.782355157170d+3 -0.562784094508d-2 -0.843317187588d+3
-0.600934897964d-4 0.145050417148d-1 0.222324172533d-7
-0.204419971811d-4 0.245556593457d-3
@EOS !equation of state specification
FES short Helmholtz equation of state for R-41 of Lemmon and Span (2001).
?LITERATURE REFERENCE \
?Lemmon, E.W. and Span, R.,
? preliminary equation, 2001.
?\
!end of info section
129.82 !lower temperature limit [K]
500.0 !upper temperature limit [K]
60000.0 !upper pressure limit [kPa]
29.6 !maximum density [mol/L]
CPP !pointer to Cp0 model
34.033 !molecular weight [g/mol]
129.82 !triple point temperature [K]
0.344 !pressure at triple point [kPa]
29.6 !density at triple point [mol/L]
194.8 !normal boiling point temperature [K]
0.199 !acentric factor
317.41 5897.0 9.1928 !Tc [K], pc [kPa], rhoc [mol/L]
317.41 9.1928 !reducing parameters [K, mol/L]
8.314472 !gas constant [J/mol-K]
12 4 0 0 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare
0.833389E+00 0.25 1.0 0 !a(i),t(i),d(i),l(i)
-0.252776E+01 1.25 1.0 0
0.598688E+00 1.5 1.0 0
0.532398E-01 0.25 3.0 0
0.119278E-03 0.875 7.0 0
-0.325489E+00 2.375 1.0 1
0.357704E+00 2.0 2.0 1
0.390531E-03 2.125 5.0 1
-0.123484E+00 3.5 1.0 2
-0.678148E-01 6.5 1.0 2
-0.380035E-01 4.75 4.0 2
-0.115409E-01 12.5 2.0 3
@EOS !equation of state specification
ECS Extended Corresponding States model w/ T-dependent shape factors.
?LITERATURE REFERENCE \
?Huber, M.L. and Ely, J.F.,
? "A predictive extended corresponding states model for pure and mixed
? refrigerants including an equation of state for R134a,"
? Int. J. Refrigeration, 17:18-31, 1994.\
?\
?shape factors fit by M.L. Huber (04-17-96), NIST, Boulder, CO \
?based on vapor pressure and saturated liquid density data of:\
?J.W. Magee, unpublished data, NIST, Boulder, CO, 1996.
?C.D. Holcomb, unpublished data, NIST, Boulder, CO, 1996.\
?\
?the ideal-gas contribution is computed with a polynomial Cp0 fit based on:\
?Chase, M.W., Davies, C.A., Downey, J.R., Frurip, D.J., McDonald, R.A., and
? Syverd, A.N.,
? "JANAF Thermochemical Tables,"
? Third Edition, J. Phys. Chem. Ref. Data, 14(suppl. 1):1-1856, 1985.\
?\
!end of info section
144.0 !lower temperature limit [K] (based on Ttp/Tc of ref fluid)
400.0 !upper temperature limit [K]
40000.0 !upper pressure limit [kPa]
28.20 !maximum density [mol/L] (sat liq density at 144 K)
CPP !pointer to Cp0 model
R134a.fld
BWR !pointer to reference fluid model
0.32668 !acentric factor for R134a used in shape factor correlation
0.259147 !critical compressibility for R134a used in correlation
0.200388 !acentric factor for R41 used in shape factor correlation
317.28 !critical temperature [K]
5897.0 !critical pressure [kPa]
9.30 !critical density [mol/L]
2 !number of temperature coefficients for 'f' shape factor
-0.80833d-1 0.0 !alpha1 of Huber & Ely
-0.71412d+0 1.0 !alpha2 of Huber & Ely (log(Tr) term)
0 !number of density coefficients for 'f' shape factor
2 !number of temperature coefficients for 'h' shape factor
0.50318d+0 0.0 !beta1 of Huber & Ely
-0.43312d-1 1.0 !beta2 of Huber & Ely (log(Tr) term)
0 !number of density coefficients for 'h' shape factor
#AUX !auxiliary model specification
CPP ideal gas heat capacity function of Chase et al. (1985).
?LITERATURE REFERENCES \
?polynomial fit based on spectroscopic values of:\
?Chase, M.W., Davies, C.A., Downey, J.R., Frurip, D.J., McDonald, R.A., and
? Syverd, A.N.,
? "JANAF Thermochemical Tables,"
? Third Edition, J. Phys. Chem. Ref. Data, 14(suppl. 1):1-1856, 1985.\
?
!end of info section
100.0 !lower temperature limit [K]
500.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 1.0 !reducing parameters for T, Cp0
4 0 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
38.133739d0 0.00 !c(i), power of T
-7.88701d-2 1.00
3.29302d-4 2.00
-2.37475d-7 3.00
#TRN !transport model specification
ECS Extended Corresponding States model (R134a reference); predictive mode.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?Insufficient data to perform a fit, limited comparisons are available with the data of:\
?\
?Tomassini, F.; Levi, A. C.; and Scoles, G.(1970),"Viscosity and thermal conductivity
? of polar gases in an electric field", Physica (Amsterdam), 49:299-304.
?
?Average absolute deviations of the fit from the experimental data were:\
? Tomassini: 12.05%; Overall: 12.05% \
?
?\
?DATA SOURCES FOR VISCOSITY\
?Insufficient data to perform a fit; limited comparisons are available with the data of:\
?\
?
?Tomassini, F.; Levi, A. C.; and Scoles, G.(1970),"Viscosity and thermal conductivity
? of polar gases in an electric field", Physica (Amsterdam), 49:299-304.
?
?Kochubey, V. F.; and Moin, F. B. (1978),"Determination of Gas-Kinetic Diameters of
? Fluoromethane Molecules", Zh. Fiz. Khim.,52:15-17.
?
?Dunlop, P.J. (1994). "Viscosities of a series of gaseous fluorocarbons at 25C", J.Chem.Phys.
? 100(4):3149-3151.
?
?Casparian, A.S. and Cole, R.H. (1974). "Viscosities of polar gases by relaxation
? of capillary flow", J. Chem. Phys. 60(3):1106-1109.
?
?Average absolute deviations of the fit from the experimental data were:\
? Tomassini: 22.5%; Kochubey: 7.1%; Dunlop:7.2%; Casparian: 9.4%
? Overall: 10.8%
?\
?The Lennard-Jones parameters are estimated.\
?
!end of info section
144.0 !lower temperature limit [K] (based on Ttp/Tc of ref fluid)
400.0 !upper temperature limit [K]
40000.0 !upper pressure limit [kPa]
28.20 !maximum density [mol/L] (sat liq density at 144 K)
FEQ R134a.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.4123 !Lennard-Jones coefficient sigma [nm] for ECS method estimated from scaled r134a
244.88 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.3200d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
1 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
1 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
TK6 !pointer to critical enhancement auxiliary function
#AUX !thermal conductivity critical enhancement model
TK6 simplified thermal conductivity critical enhancement of Olchowy and Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.
?\
?as applied to CO2 by:
?\
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
!end of info section
144.0 !lower temperature limit [K] (based on Ttp/Tc of ref fluid)
400.0 !upper temperature limit [K]
40000.0 !upper pressure limit [kPa]
28.20 !maximum density [mol/L] (sat liq density at 144 K)
9 0 0 0 !# terms: CO2-terms, spare, spare, spare
1.0 1.0 1.0 !reducing par for T, rho, tcx (mW/m-K)
0.630d0 !gnu (universal exponent)
1.239d0 !gamma (universal exponent)
1.03d0 !R0 (universal amplitude)
0.063d0 !z (universal exponent--not used for t.c., only viscosity)
1.00d0 !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
0.194d-9 !xi0 (amplitude) [m]
0.0496 !gam0 (amplitude) [-]
0.500d-09 !qd_inverse (modified effective cutoff parameter) [m] generic number,not fit to data
475.92d+00 !tref (reference temperature)=1.5*Tc [K]
#STN !surface tension specification
ST1 surface tension model; estimated
?LITERATURE REFERENCE \
?Estimated value based on an analysis of the homologous series: \
? methane, (R41), R32, R23, R14.\
?This was done by fitting the sigma_0 coefficients in the correlation: \
? sigma = sigma_0 * (1 - T/Tc)**1.26 \
?for the above fluids to a quadratic in the number of fluorine atoms.\
?M.O. McLinden, NIST, 08-20-96\
?
!end of info section
129.82 !lower temperature limit [K]
317.28 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1 !number of terms in surface tension model
317.28 !critical temperature used in fit (dummy)
0.0633 1.26 !sigma0 and n
@END
c 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -