📄 methane.fld
字号:
#TCX !thermal conductivity model specification
TC1 pure fluid thermal conductivity model of Friend et al. (1989).
?LITERATURE REFERENCE \
?Friend, D.G., Ely, J.F., and Ingham, H.,
? "Tables for the Thermophysical Properties of Methane,"
? NIST Technical Note 1325, 1989.
?\
?The uncertainty in thermal conductivity of the dilute gas between 130
?and 625 K is 2.5%. For temperatures below 130 K, the uncertainty is
?less than 10%. Excluding the dilute gas, the uncertainty is 2% between
?110 and 725 K at pressures up to 70 MPa, except near the critical
?point which has an uncertainty of 5% or greater. For the vapor at lower
?temperatures and the dense liquid near the triple point, an uncertainty of
?10% is possible.
?\
!end of info section
90.6941 !lower temperature limit [K]
625.0 !upper temperature limit [K]
1000000.0 !upper pressure limit [kPa]
40.072 !maximum density [mol/L]
3 0 !# terms for dilute gas function: numerator, denominator
174. 1.0d-3 !reducing parameters for T, tcx
1.45885 0.0 !coeff, power in T
-0.4377162 -1.0
0. -96.0 !coeff, power in T
8 0 !# terms for background gas function: numerator, denominator
190.551 10.139 6.29638d-3 !reducing parameters for T, rho, tcx
1.5554612 0.0 2.0 0.0 !coeff, powers of t, rho, exp(rho)
1. 0.0 0.0 -99.0 !The order here is important
2.4149207 0.0 1.0 0.0
0.55166331 0.0 3.0 0.0
-0.52837734 0.0 4.0 0.0
0.073809553 -1.0 4.0 0.0
0.24465507 0.0 5.0 0.0
-0.047613626 -1.0 5.0 0.0
CH4 !pointer to critical enhancement auxiliary function
#ETA !viscosity model specification
VS2 pure fluid viscosity model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?N.B. all temperatures on IPTS-68
?\
?The uncertainty in viscosity is 2%, except in the critical region which is 5%.
?\
!end of info section
90.6941 !lower temperature limit [K]
625.0 !upper temperature limit [K]
1000000.0 !upper pressure limit [kPa]
40.072 !maximum density [mol/L]
CI2 !pointer to collision integral model
0.368 !Lennard-Jones coefficient sigma [nm]
168.0 !Lennard-Jones coefficient epsilon/kappa [K]
0.1069188 !const in Eq 19 = 5/16*(k*MW/1000/pi/Na)**0.5*1.0d12
0.5 !exponent in Eq 19 for T
0.16969859271d+0 !coeff for initial density dependence of viscosity (eq 21); Fv(1)
-0.13337234608d-1 !Fv(2)
0.140d+1 !Fv(3)
0.168d+3 !Fv(4)
-0.1620427429d+2 !coefficients for residual viscosity, eqs (22 - 25)
0.4270589027d+3 !Ev(2)
0.1402596278d+2 !Ev(3)
-0.3916837745d+4 !Ev(4)
-0.3477099090d-1 !Ev(5)
0.2136542674d+2 !Ev(6)
0.1436802482d+4 !Ev(7)
10.15 !Ev(8)
NUL !pointer to critical enhancement auxiliary function (none used)
@ETA !viscosity model specification
VS1 pure fluid viscosity model of Friend et al. (1989).
?LITERATURE REFERENCE \
?Friend, D.G., Ely, J.F., and Ingham, H.,
? "Tables for the Thermophysical Properties of Methane,"
? NIST Technical Note 1325, 1989.
?\
?The uncertainty in viscosity is 0.5% between 270 and 600 K, and 1% above
?600 K. Below 270 K, the uncertainty is 2%.
?\
!end of info section
90.6941 !lower temperature limit [K]
625.0 !upper temperature limit [K]
1000000.0 !upper pressure limit [kPa]
40.072 !maximum density [mol/L]
1 !number of terms associated with dilute-gas function
CI2 !pointer to reduced effective collision cross-section model
0.36652 !Lennard-Jones coefficient sigma [nm]
174. !Lennard-Jones coefficient epsilon/kappa [K]
174. 10.0 !reducing parameters for T, eta
0.14105376 0.50d0 !Chapman-Enskog term
0 !number of terms for initial density dependence
0 0 9 3 0 0 !# resid terms: close-packed density; simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
190.551 10.139 12.149 !reducing parameters for T, rho, eta
0.41250137 0.0 1.00 0.00 0
-0.14390912 -1.0 1.00 0.00 0
0.10366993 0.0 2.00 0.00 0
0.40287464 -1.0 2.00 0.00 0
-0.24903524 -1.5 2.00 0.00 0
-0.12953131 0.0 3.00 0.00 0
0.06575776 -2.0 3.00 0.00 0
0.02566628 0.0 4.00 0.00 0
-0.03716526 -1.0 4.00 0.00 0
1.00000000 0.0 0.00 0.00 0
-0.38798341 0.0 1.00 0.00 0
0.03533815 -1.0 1.00 0.00 0
NUL !pointer to critical enhancement auxiliary function (none used)
@TCX !thermal conductivity model specification
TC2 pure fluid thermal conductivity model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?N.B. all temperatures on IPTS-68
?\
?The uncertainty in thermal conductivity is 5% in the liquid, 4% in the vapor,
?3% at T>Tc, and 8% in the critical region.
?\
!end of info section
90.6941 !lower temperature limit [K]
625.0 !upper temperature limit [K]
1000000.0 !upper pressure limit [kPa]
40.072 !maximum density [mol/L]
CI2 !pointer to collision integral model
0.368 !Lennard-Jones coefficient sigma [nm]
168.0 !Lennard-Jones coefficient epsilon/kappa [K]
0.1069188 !const in Eq 19 = 5/16*(k*MW/1000/pi/Na)**0.5*1.0d12
0.1346953698d+1 !dilute gas terms (Eq 27): Gt(1)
-0.3254677753d+0 ! Gt(2)
0.2325800819d-2 !residual terms (Eqs 26, 28-30): Et(1)
-0.2477927999d+0
0.3880593713d+2
-0.1579519146d-6
0.3717991328d-2
-0.9616989434d+0
-0.3017352774d-1
0.4298153386d+0 !Et(8)
TK2 !pointer to critical enhancement model (follows immediately)
37.42368d0 !critical enhancement terms (Eqs D1-D4): X1
3.16714d0
0.78035d0
0.60103d0 !X4
6.512707d-10 !Z
1.38054d-23 !Boltzmann's constant, k
0.16969859271d+0 !coeff for initial density dependence of viscosity (eq 21); Fv(1)
-0.13337234608d-1 !Fv(2)
0.140d+1 !Fv(3)
0.168d+3 !Fv(4)
-0.1620427429d+2 !coefficients for residual viscosity, eqs (22 - 25)
0.4270589027d+3 !Ev(2) (the viscosity is also used in conductivity correlation)
0.1402596278d+2 !Ev(3)
-0.3916837745d+4 !Ev(4)
-0.3477099090d-1 !Ev(5)
0.2136542674d+2 !Ev(6)
0.1436802482d+4 !Ev(7)
#AUX !collision integral specification
CI2 collision integral model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Friend, D.G., Ely, J.F., and Ingham, H.,
? "Tables for the Thermophysical Properties of Methane,"
? NIST Technical Note 1325, 1989.
?\
!end of info section
90.6941 !lower temperature limit [K]
625.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
9 !number of terms
-3.0328138281
16.918880086
-37.189364917
41.288861858
-24.615921140
8.9488430959
-1.8739245042
0.20966101390
-0.009657043707
@TRN !transport model specification
ECS Extended Corresponding States model (Nitrogen reference); predictive mode.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?the Lennard-Jones parameters are taken from:
?\
?Reid, R.C., Prausnitz, J.M., and Poling, B.E.,
? "The Properties of Gases and Liquids,"
? 4th edition, New York, McGraw-Hill Book Company, 1987.
?\
!end of info section
90.6941 !lower temperature limit [K]
625.0 !upper temperature limit [K]
1000000.0 !upper pressure limit [kPa]
40.072 !maximum density [mol/L]; next line is ref fluid EOS
FEQ Nitrogen.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.3758 !Lennard-Jones coefficient sigma [nm] for ECS method
148.6 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.3200d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
1 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
1 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
#STN !surface tension specification
ST1 surface tension model of Somayajulu (1988).
?LITERATURE REFERENCE \
?Somayajulu, G.R.
? "A Generalized Equation for Surface Tension from the Triple Point to the
? Critical Point,"
? Int. J. Thermophys., 9(4):559-566, 1988.
?\
!end of info section
90.6941 !lower temperature limit [K]
190.564 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
3 !number of terms in surface tension model
190.55 !critical temperature used in fit (dummy)
0.0308936 1.25 !sigma0 and n
0.0249105 2.25
-0.0068276 3.25
#DE !dielectric constant specification
DE1 dielectric constant model of Younglove and Ely (1987).
?LITERATURE REFERENCE \
?Younglove, B.A. and Ely, J.F.,
? "Thermophysical properties of fluids. II. Methane, ethane, propane,
? isobutane and normal butane,"
? J. Phys. Chem. Ref. Data, 16:577-798, 1987.
?\
?The uncertainty in dielectric constant is 0.05%.
?\
!end of info section
83.80 !lower temperature limit [K]
150.6633 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
190.555 1.0 1.0 !reducing parameters for t, d, and p
4 1 0 0 0 0 !number of terms in dielectric constant model
0.65701018d-2 0. 1. 0. !coef, t exp, d exp, p exp
0.63835013d-5 0. 2. 0.
-0.18718728d-6 0. 3. 0.
-0.94711735d-6 0. 1. 1.
-0.53134820d-4 0. 1. 0.
#MLT !melting line specification
ML1 melting line model of Setzmann and Wagner (1991).
?LITERATURE REFERENCE \
?Setzmann, U. and Wagner, W.,
? "A New Equation of State and Tables of Thermodynamic Properties for Methane
? Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa,"
? J. Phys. Chem. Ref. Data, 20(6):1061-1151, 1991.
?\
!end of info section
90.6941 !lower temperature limit [K]
625.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
90.6941 11.696 !reducing temperature and pressure
5 0 0 0 0 0 !number of terms in melting line equation
1. 0. !coefficients and exponents
0.247568d5 1.85
-0.736602d4 2.1
-0.247568d5 0.
0.736602d4 0.
#SBL !sublimation line specification
SB3 sublimation line model of Lemmon (2002).
?LITERATURE REFERENCE \
?Lemmon, E.W.,
? preliminary equation, 2002.
?\
!end of info section
90.6941 !lower temperature limit [K]
90.6941 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
90.6941 11.696 !reducing temperature and pressure
0 1 0 0 0 0 !number of terms in sublimation line equation
-12.84 1. !coefficients and exponents
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -