⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 co2.fld

📁 一个关于物性计算的软件
💻 FLD
📖 第 1 页 / 共 2 页
字号:
  0.464945130861d+00  18.000   5.00    4
 -0.817090055061d-01  23.000   5.00    4


#AUX               !auxiliary model specification
CP1  ideal gas heat capacity function of Ely et al.
?LITERATURE REFERENCE \
?Ely, J.F., Magee, J.W., and Haynes, W.M.,
? "Thermophysical properties for special high CO2 content mixtures,"
? Research Report RR-110, Gas Processors Association, Tulsa, OK, 1987.
?\
!end of info section
200.0              !lower temperature limit [K]
1000.0             !upper temperature limit [K]
0.0                !upper pressure limit [kPa]
0.0                !maximum density [mol/L]
1.0          8.31441                   !reducing parameters for T, Cp0
  1  3    0  0    0  0  0              !Nterms:  polynomial, exponential, cosh, sinh
3.50d0           0.00                  !c(i), power of T
 2.00d0        960.11d0                !=omega_1 (degenerate mode--taken twice)
 1.00d0       1932.00d0                !=omega_2
 1.00d0       3380.20d0                !=omega_3


#AUX               !auxiliary model specification
CP2  ideal gas heat capacity function of McCarty
?LITERATURE REFERENCE \
?McCarty, R.D.,
? "Correlations for the Thermophysical Properties of Carbon Dioxide,"
? Unpublished correlation, National Institute of Standards
? and Technology, Boulder, 1988.
?\
?Use of this Cp0 equation in conjunction with Ely's BWR will produce numbers
? identical to those calculated in NIST12, Version 3.0.
?\
!end of info section
216.58             !lower temperature limit [K]
1000.0             !upper temperature limit [K]
0.0                !upper pressure limit [kPa]
0.0                !maximum density [mol/L]
1.0          8.31434                   !reducing parameters for T, Cp0
  7  1    0  0    0  0  0              !Nterms:  polynomial, exponential, cosh, sinh
 -0.9379061144997d+07   -3.00d0
  0.2028666045159d+06   -2.00d0
 -0.1595185479613d+04   -1.00d0
  0.8189952737742d+01    0.00d0
 -0.1298281615271d-02    1.00d0
  0.1037209193687d-05    2.00d0
 -0.3399620971158d-09    3.00d0
  0.6961565991385d+00 30000.d0


@EOS               !equation of state specification
FES  short Helmholtz equation of state for carbon dioxide of Span (2000).
?LITERATURE REFERENCE \
?Span, R.,
? "Multiparameter Equations of State - An Accurate Source of Thermodynamic
? Property Data," Springer, Berlin, Heidelberg, New York, 2000.
?\
?The uncertainties of the equation of state are approximately 0.2% (to
?0.5% at high pressures) in density, 1% (in the vapor phase) to 2% in
?heat capacity, 1% (in the vapor phase) to 2% in the speed of sound, and
?0.2% in vapor pressure, except in the critical region.
?\
!end of info section
216.592            !lower temperature limit [K]
600.0              !upper temperature limit [K]
100000.0           !upper pressure limit [kPa]
37.24              !maximum density [mol/L]
CPP                                    !pointer to Cp0 model
44.01                                  !molecular weight [g/mol]
216.592                                !triple point temperature [K]
517.86                                 !pressure at triple point [kPa]
26.795                                 !density at triple point [mol/L]
185.3                                  !normal boiling point temperature [K]
0.225                                  !acentric factor
304.1282     7377.3       10.624858    !Tc [K], pc [kPa], rhoc [mol/L]
304.1282                  10.624858    !reducing parameters [K, mol/L]
8.31451                                !gas constant [J/mol-K]
      12  4      0  0       0  0       !# terms, # coeff/term for:  "normal" terms, critical, spare
 0.898751080000E+00  0.25    1.0     0 !a(i),t(i),d(i),l(i)
-0.212819850000E+01  1.25    1.0     0
-0.681903200000E-01  1.5     1.0     0
 0.763553060000E-01  0.25    3.0     0
 0.220532530000E-03  0.875   7.0     0
 0.415418230000E+00  2.375   1.0     1
 0.713356570000E+00  2.0     2.0     1
 0.303542340000E-03  2.125   5.0     1
-0.366431430000E+00  3.5     1.0     2
-0.144077810000E-02  6.5     1.0     2
-0.891667070000E-01  4.75    4.0     2
-0.236998870000E-01 12.5     2.0     3


#TCX               !thermal conductivity model specification
TC1  pure fluid thermal conductivity model of Vesovic et al. (1990).
?LITERATURE REFERENCE \
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.,
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
?Note:  Vesovic et al. use a crossover equation of state to compute derivatives
? in the critical region; the default EOS is used here.  Also, their
? "simplified" critical enhancement for thermal conductivity is used.
?\
?The uncertainty in thermal conductivity is less than 5%.
?\
!end of info section
216.58             !lower temperature limit [K]
1100.0             !upper temperature limit [K]
800000.0           !upper pressure limit [kPa]
37.24              !maximum density [mol/L]
2   6              !# terms for dilute gas function:  numerator, denominator
251.196     0.001        !reducing parameters for T (=eps/k), tcx (orig in mW/m-K)
 7.5378307d+0   0.50d0   !coeff (=0.475598*SQRT(eps/k)), power in T (T* in this case)
 4.8109652d-2 -99.00d0   !power -99 indicates: mult above numerator term by [1 + coeff*(Cp0 - 2.5*R)], where coeff = 0.4/R
 0.4226159d+0   0.00d0   !denominator is Eq 30 in Vesovic
 0.6280115d+0  -1.00d0
-0.5387661d+0  -2.00d0
 0.6735941d+0  -3.00d0
-0.4362677d+0  -6.00d0
 0.2255388d+0  -7.00d0
4   0              !# terms for background gas function:  numerator, denominator
1.0     2.272221d-2   1.0d-3              !reducing par for T, rho, tcx (orig corr in kg/m**3, mW/m-K)
 2.447164d-02   0.00d0   1.00d0   0.00d0  !coeff, powers of t, rho, spare for future use
 8.705605d-05   0.00d0   2.00d0   0.00d0
-6.547950d-08   0.00d0   3.00d0   0.00d0
 6.594919d-11   0.00d0   4.00d0   0.00d0
TK3                !pointer to critical enhancement auxiliary function


#AUX               !thermal conductivity critical enhancement model
TK3  simplified thermal conductivity critical enhancement of Olchowy and Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.
?\
?as applied to CO2 by:
?\
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.,
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
!end of info section
216.58             !lower temperature limit [K]
1100.0             !upper temperature limit [K]
800000.0           !upper pressure limit [kPa]
37.24              !maximum density [mol/L]
9  0  0  0         !# terms:  CO2-terms, spare, spare, spare
1.0     1.0     1.0      !reducing par for T, rho, tcx (mW/m-K)
 0.630d+00         !gnu (universal exponent)
 1.2415d+00        !gamma (universal exponent)
 1.01d+00          !R0 (universal amplitude)
 0.065d+00         !z (universal exponent--not used for t.c., only viscosity)
 1.00d+00          !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
 1.5d-10           !xi0 (amplitude) [m]
 0.052d+00         !gam0 (amplitude) [-]
 0.40d-09          !qd_inverse (modified effective cutoff parameter) [m]
 450.0d+00         !tref (reference temperature) [K]


#ETA               !viscosity model specification
VS1  pure fluid viscosity model of Fenghour et al. (1998).
?LITERATURE REFERENCE \
?Fenghour, A., Wakeham, W.A., Vesovic, V.,
? "The Viscosity of Carbon Dioxide,"
? J. Phys. Chem. Ref. Data, 27:31-44, 1998.
?\
?The uncertainty in viscosity ranges from 0.3% in the dilute gas near room
?temperature to 5% at the highest pressures.
?\
!end of info section
216.592            !lower temperature limit [K]
1500.0             !upper temperature limit [K]
800000.0           !upper pressure limit [kPa]
37.24              !maximum density [mol/L]
1                  !number of terms associated with dilute-gas function
CI1                !pointer to reduced effective collision cross-section model
1.                 !Lennard-Jones coefficient sigma [nm] (Not used for CO2)
251.196            !Lennard-Jones coefficient epsilon/kappa [K]
1.0    1.0         !reducing parameters for T, eta
1.00697d0   0.50d0 !Chapman-Enskog term
0                  !number of terms for initial density dependence
0 5 0 0 0 0        !# resid terms:  close-packed density;  simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
251.196 0.0227222 1.0                   !reducing parameters for T (= eps/k), rho, eta
 0.4071119d-2    0.00  1.00  0.00  0  !d_11; powers of tau, del, del0; power of del in exponential [0 indicated no exponential term present]
 0.7198037d-4    0.00  2.00  0.00  0  !d_21
 0.2411697d-16  -3.00  6.00  0.00  0  !d_64
 0.2971072d-22   0.00  8.00  0.00  0  !d_81
-0.1627888d-22  -1.00  8.00  0.00  0  !d_82
NUL                !pointer to critical enhancement auxiliary function (none used)


#AUX               !reduced effective collision cross-section model specification
CI1  reduced effective collision cross-section model (empirical form in terms of log(T*))
?LITERATURE REFERENCE \
?Fenghour, A., Wakeham, W.A., Vesovic, V.,
? "The Viscosity of Carbon Dioxide,"
? J. Phys. Chem. Ref. Data, 27:31-44, 1998.
?\
!end of info section
216.592            !lower temperature limit [K]
1100.0             !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
5                  !number of terms
 0.235156d0     0  !coeff, power of Tstar
-0.491266d0     1
 5.211155d-2    2
 5.347906d-2    3
-1.537102d-2    4


@TRN               !transport model specification
ECS  Extended Corresponding States model (R134a reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:
?\
?Johns, A.I., Rashid, S., Watson, J.T.R., and Clifford, A.,
? "Thermal conductivity of argon, nitrogen, carbon dioxide at elevated
? temperatures and pressures,"
? J. Chem. Soc. Faraday Trans. I, 82:2235-2246, 1986.
?\
?Johnston, H.L. and Grilly, E.R.,
? "The thermal conductivities of eight common gases between 80

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -