📄 co2.fld
字号:
0.464945130861d+00 18.000 5.00 4
-0.817090055061d-01 23.000 5.00 4
#AUX !auxiliary model specification
CP1 ideal gas heat capacity function of Ely et al.
?LITERATURE REFERENCE \
?Ely, J.F., Magee, J.W., and Haynes, W.M.,
? "Thermophysical properties for special high CO2 content mixtures,"
? Research Report RR-110, Gas Processors Association, Tulsa, OK, 1987.
?\
!end of info section
200.0 !lower temperature limit [K]
1000.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 8.31441 !reducing parameters for T, Cp0
1 3 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
3.50d0 0.00 !c(i), power of T
2.00d0 960.11d0 !=omega_1 (degenerate mode--taken twice)
1.00d0 1932.00d0 !=omega_2
1.00d0 3380.20d0 !=omega_3
#AUX !auxiliary model specification
CP2 ideal gas heat capacity function of McCarty
?LITERATURE REFERENCE \
?McCarty, R.D.,
? "Correlations for the Thermophysical Properties of Carbon Dioxide,"
? Unpublished correlation, National Institute of Standards
? and Technology, Boulder, 1988.
?\
?Use of this Cp0 equation in conjunction with Ely's BWR will produce numbers
? identical to those calculated in NIST12, Version 3.0.
?\
!end of info section
216.58 !lower temperature limit [K]
1000.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 8.31434 !reducing parameters for T, Cp0
7 1 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
-0.9379061144997d+07 -3.00d0
0.2028666045159d+06 -2.00d0
-0.1595185479613d+04 -1.00d0
0.8189952737742d+01 0.00d0
-0.1298281615271d-02 1.00d0
0.1037209193687d-05 2.00d0
-0.3399620971158d-09 3.00d0
0.6961565991385d+00 30000.d0
@EOS !equation of state specification
FES short Helmholtz equation of state for carbon dioxide of Span (2000).
?LITERATURE REFERENCE \
?Span, R.,
? "Multiparameter Equations of State - An Accurate Source of Thermodynamic
? Property Data," Springer, Berlin, Heidelberg, New York, 2000.
?\
?The uncertainties of the equation of state are approximately 0.2% (to
?0.5% at high pressures) in density, 1% (in the vapor phase) to 2% in
?heat capacity, 1% (in the vapor phase) to 2% in the speed of sound, and
?0.2% in vapor pressure, except in the critical region.
?\
!end of info section
216.592 !lower temperature limit [K]
600.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
37.24 !maximum density [mol/L]
CPP !pointer to Cp0 model
44.01 !molecular weight [g/mol]
216.592 !triple point temperature [K]
517.86 !pressure at triple point [kPa]
26.795 !density at triple point [mol/L]
185.3 !normal boiling point temperature [K]
0.225 !acentric factor
304.1282 7377.3 10.624858 !Tc [K], pc [kPa], rhoc [mol/L]
304.1282 10.624858 !reducing parameters [K, mol/L]
8.31451 !gas constant [J/mol-K]
12 4 0 0 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare
0.898751080000E+00 0.25 1.0 0 !a(i),t(i),d(i),l(i)
-0.212819850000E+01 1.25 1.0 0
-0.681903200000E-01 1.5 1.0 0
0.763553060000E-01 0.25 3.0 0
0.220532530000E-03 0.875 7.0 0
0.415418230000E+00 2.375 1.0 1
0.713356570000E+00 2.0 2.0 1
0.303542340000E-03 2.125 5.0 1
-0.366431430000E+00 3.5 1.0 2
-0.144077810000E-02 6.5 1.0 2
-0.891667070000E-01 4.75 4.0 2
-0.236998870000E-01 12.5 2.0 3
#TCX !thermal conductivity model specification
TC1 pure fluid thermal conductivity model of Vesovic et al. (1990).
?LITERATURE REFERENCE \
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.,
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
?Note: Vesovic et al. use a crossover equation of state to compute derivatives
? in the critical region; the default EOS is used here. Also, their
? "simplified" critical enhancement for thermal conductivity is used.
?\
?The uncertainty in thermal conductivity is less than 5%.
?\
!end of info section
216.58 !lower temperature limit [K]
1100.0 !upper temperature limit [K]
800000.0 !upper pressure limit [kPa]
37.24 !maximum density [mol/L]
2 6 !# terms for dilute gas function: numerator, denominator
251.196 0.001 !reducing parameters for T (=eps/k), tcx (orig in mW/m-K)
7.5378307d+0 0.50d0 !coeff (=0.475598*SQRT(eps/k)), power in T (T* in this case)
4.8109652d-2 -99.00d0 !power -99 indicates: mult above numerator term by [1 + coeff*(Cp0 - 2.5*R)], where coeff = 0.4/R
0.4226159d+0 0.00d0 !denominator is Eq 30 in Vesovic
0.6280115d+0 -1.00d0
-0.5387661d+0 -2.00d0
0.6735941d+0 -3.00d0
-0.4362677d+0 -6.00d0
0.2255388d+0 -7.00d0
4 0 !# terms for background gas function: numerator, denominator
1.0 2.272221d-2 1.0d-3 !reducing par for T, rho, tcx (orig corr in kg/m**3, mW/m-K)
2.447164d-02 0.00d0 1.00d0 0.00d0 !coeff, powers of t, rho, spare for future use
8.705605d-05 0.00d0 2.00d0 0.00d0
-6.547950d-08 0.00d0 3.00d0 0.00d0
6.594919d-11 0.00d0 4.00d0 0.00d0
TK3 !pointer to critical enhancement auxiliary function
#AUX !thermal conductivity critical enhancement model
TK3 simplified thermal conductivity critical enhancement of Olchowy and Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.
?\
?as applied to CO2 by:
?\
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.,
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
!end of info section
216.58 !lower temperature limit [K]
1100.0 !upper temperature limit [K]
800000.0 !upper pressure limit [kPa]
37.24 !maximum density [mol/L]
9 0 0 0 !# terms: CO2-terms, spare, spare, spare
1.0 1.0 1.0 !reducing par for T, rho, tcx (mW/m-K)
0.630d+00 !gnu (universal exponent)
1.2415d+00 !gamma (universal exponent)
1.01d+00 !R0 (universal amplitude)
0.065d+00 !z (universal exponent--not used for t.c., only viscosity)
1.00d+00 !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
1.5d-10 !xi0 (amplitude) [m]
0.052d+00 !gam0 (amplitude) [-]
0.40d-09 !qd_inverse (modified effective cutoff parameter) [m]
450.0d+00 !tref (reference temperature) [K]
#ETA !viscosity model specification
VS1 pure fluid viscosity model of Fenghour et al. (1998).
?LITERATURE REFERENCE \
?Fenghour, A., Wakeham, W.A., Vesovic, V.,
? "The Viscosity of Carbon Dioxide,"
? J. Phys. Chem. Ref. Data, 27:31-44, 1998.
?\
?The uncertainty in viscosity ranges from 0.3% in the dilute gas near room
?temperature to 5% at the highest pressures.
?\
!end of info section
216.592 !lower temperature limit [K]
1500.0 !upper temperature limit [K]
800000.0 !upper pressure limit [kPa]
37.24 !maximum density [mol/L]
1 !number of terms associated with dilute-gas function
CI1 !pointer to reduced effective collision cross-section model
1. !Lennard-Jones coefficient sigma [nm] (Not used for CO2)
251.196 !Lennard-Jones coefficient epsilon/kappa [K]
1.0 1.0 !reducing parameters for T, eta
1.00697d0 0.50d0 !Chapman-Enskog term
0 !number of terms for initial density dependence
0 5 0 0 0 0 !# resid terms: close-packed density; simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
251.196 0.0227222 1.0 !reducing parameters for T (= eps/k), rho, eta
0.4071119d-2 0.00 1.00 0.00 0 !d_11; powers of tau, del, del0; power of del in exponential [0 indicated no exponential term present]
0.7198037d-4 0.00 2.00 0.00 0 !d_21
0.2411697d-16 -3.00 6.00 0.00 0 !d_64
0.2971072d-22 0.00 8.00 0.00 0 !d_81
-0.1627888d-22 -1.00 8.00 0.00 0 !d_82
NUL !pointer to critical enhancement auxiliary function (none used)
#AUX !reduced effective collision cross-section model specification
CI1 reduced effective collision cross-section model (empirical form in terms of log(T*))
?LITERATURE REFERENCE \
?Fenghour, A., Wakeham, W.A., Vesovic, V.,
? "The Viscosity of Carbon Dioxide,"
? J. Phys. Chem. Ref. Data, 27:31-44, 1998.
?\
!end of info section
216.592 !lower temperature limit [K]
1100.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
5 !number of terms
0.235156d0 0 !coeff, power of Tstar
-0.491266d0 1
5.211155d-2 2
5.347906d-2 3
-1.537102d-2 4
@TRN !transport model specification
ECS Extended Corresponding States model (R134a reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:
?\
?Johns, A.I., Rashid, S., Watson, J.T.R., and Clifford, A.,
? "Thermal conductivity of argon, nitrogen, carbon dioxide at elevated
? temperatures and pressures,"
? J. Chem. Soc. Faraday Trans. I, 82:2235-2246, 1986.
?\
?Johnston, H.L. and Grilly, E.R.,
? "The thermal conductivities of eight common gases between 80
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -