📄 r12.fld
字号:
R12 !short name
75-71-8 !CAS number
dichlorodifluoromethane !full name
CCl2F2 !chemical formula
CFC-12 !synonym
120.913 !molecular weight [g/mol]
116.099 !triple point temperature [K]
243.398 !normal boiling point [K]
385.12 !critical temperature [K]
4136.1 !critical pressure [kPa]
4.672781 !critical density [mol/L] (565 kg/m**3)
0.17948 !acentric factor
0.510 !dipole moment [Debye]; value from REFPROP v5.0
IIR !default reference state
6.1 !version number
! compiled by M. McLinden, NIST Physical and Chemical Properties Division, Boulder, Colorado
! 02-29-96 MM, original version
! 03-17-96 MM, add transport correlations compiled by S.A. Klein
! 06-17-96 MM, add thermal conductivity coefficients fitted by S.A. Klein
! 08-19-96 MM, add surface tension fit
! 10-09-96 MM, add dipole moment value
! add Cp0 function of Marx et al.
! 01-31-97 MM, change pointer for ECS reference viscosity from VS3 to VS1
! modify ncoeff line for FEQ to accommodate critical region terms
! 02-20-97 MM, add default reference state
! 02-26-97 MM, add version number (future use)
! 03-11-97 MM, modify ECS-transport to new format
! 03-25-97 MM, set Psi,Chi coeff in ECS-transport to 1,0 pending refit of data
! 06-01-97 EWL, add parameters for ECS viscosity correlation
! 10-24-97 MM, read in f_int term in Eucken correlation in ECS method for t.c.
! change reference fluid EOS for ECS-transport from BWR to FEQ
! 11-04-97 MM, enter thermal conductivity shape factor fitted to data
! 11-01-99 EWL, add Span 12 term short equation of state
! 11-10-99 EWL, add extra digit to ptp
#EOS !equation of state specification
FEQ Helmholtz equation of state for R-12 of Marx et al. (1992).
?LITERATURE REFERENCE \
?Marx, V., Pruss, A., and Wagner, W.,
? "Neue Zustandsgleichungen fuer R 12, R 22, R 11 und R 113. Beschreibung
? des thermodynamishchen Zustandsverhaltens bei Temperaturen bis 525 K und
? Druecken bis 200 MPa,"
? Duesseldorf: VDI Verlag, Series 19 (Waermetechnik/Kaeltetechnik), No. 57,
? 1992.
?
!end of info section
116.099 !lower temperature limit [K]
525.0 !upper temperature limit [K]
200000.0 !upper pressure limit [kPa]
15.13 !maximum density [mol/L]
CPP !pointer to Cp0 model
120.913 !molecular weight [g/mol]
116.099 !triple point temperature [K]
0.000243 !pressure at triple point [kPa]
15.1253 !density at triple point [mol/L]
243.398 !normal boiling point temperature [K]
0.17948 !acentric factor
385.12 4136.1 4.672781 !Tc [K], pc [kPa], rhoc [mol/L]
385.12 4.672781 !reducing parameters [K, mol/L]
8.314471 !gas constant [J/mol-K]
22 4 0 0 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare
0.2075343402d+1 0.500 1.00 0 !a(i),t(i),d(i),l(i)
-0.2962525996d+1 1.000 1.00 0
0.1001589616d-1 2.000 1.00 0
0.1781347612d-1 2.500 2.00 0
0.2556929157d-1 -0.500 4.00 0
0.2352142637d-2 0.000 6.00 0
-0.8495553314d-4 0.000 8.00 0
-0.1535945599d-1 -0.500 1.00 1
-0.2108816776d+0 1.500 1.00 1
-0.1654228806d-1 2.500 5.00 1
-0.1181316130d-1 -0.500 7.00 1
-0.4160295830d-4 0.000 12.00 1
0.2784861664d-4 0.500 12.00 1
0.1618686433d-5 -0.500 14.00 1
-0.1064614686d+0 4.000 1.00 2
0.9369665207d-3 4.000 9.00 2
0.2590095447d-1 2.000 1.00 3
-0.4347025025d-1 4.000 1.00 3
0.1012308449d+0 12.000 3.00 3
-0.1100003438d+0 14.000 3.00 3
-0.3361012009d-2 0.000 5.00 3
0.3789190008d-3 14.000 9.00 4
#AUX !auxiliary model specification
CPP ideal gas heat capacity function of Marx et al. (1992).
?LITERATURE REFERENCE \
?Marx, V., Pruss, A., and Wagner, W.,
? "Neue Zustandsgleichungen fuer R 12, R 22, R 11 und R 113. Beschreibung
? des thermodynamishchen Zustandsverhaltens bei Temperaturen bis 525 K und
? Druecken bis 200 MPa,"
? Duesseldorf: VDI Verlag, Series 19 (Waermetechnik/Kaeltetechnik), No. 57,
? 1992.
?\
?Note: Marx et al. give a Helmholtz form for the ideal gas term; it
? has been converted to a Cp0 form, by the transform:\
?\
? Cp0/R = (1 + a_3) + SUM{a_i*U_i*exp(U_i)/[1 - exp(U_i)]**2}\
? where U_i = omega_i*T_n/T, T_n = Tcrit, \
? and the a_i and omega_i are the original coefficients given by Marx\
?
!end of info section
100.0 !lower temperature limit [K]
525.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 8.31451 !reducing parameters for T, Cp0
1 4 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
4.00361975d0 0.00 != 1 + a_3; power in T
3.16062357d0 1.4334342d3 != omega_4 * T_n (T_n = 385.12 K)
0.371258136d0 2.4300498d3 != omega_5 * T_n
3.56226039d0 6.8565952d2 != omega_6 * T_n
2.12152336d0 4.1241579d2 != omega_7 * T_n
@EOS !equation of state specification
FES short Helmholtz equation of state for R-12 of Span (2000).
?LITERATURE REFERENCE \
?Span, R.,
? "Multiparameter Equations of State - An Accurate Source of Thermodynamic
? Property Data," Springer, Berlin, Heidelberg, New York, 2000.
?\
?The uncertainties of the equation of state are approximately 0.2% (to
?0.5% at high pressures) in density, 1% (in the vapor phase) to 2% in
?heat capacity, 1% (in the vapor phase) to 2% in the speed of sound, and
?0.2% in vapor pressure, except in the critical region.
?\
!end of info section
173.0 !lower temperature limit [K]
600.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
13.9 !maximum density [mol/L]
CPP !pointer to Cp0 model
120.914 !molecular weight [g/mol]
173.0 !triple point temperature [K]
1.1633 !pressure at triple point [kPa]
13.892 !density at triple point [mol/L]
243.41 !normal boiling point temperature [K]
0.179 !acentric factor
385.12 4136.1 4.6727426 !Tc [K], pc [kPa], rhoc [mol/L]
385.12 4.6727426 !reducing parameters [K, mol/L]
8.31451 !gas constant [J/mol-K]
12 4 0 0 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare
0.105572280000E+01 0.25 1.0 0 !a(i),t(i),d(i),l(i)
-0.333120010000E+01 1.25 1.0 0
0.101972440000E+01 1.5 1.0 0
0.841551150000E-01 0.25 3.0 0
0.285207420000E-03 0.875 7.0 0
0.396250570000E+00 2.375 1.0 1
0.639957210000E+00 2.0 2.0 1
-0.214234110000E-01 2.125 5.0 1
-0.362491730000E+00 3.5 1.0 2
0.193419900000E-02 6.5 1.0 2
-0.929938330000E-01 4.75 4.0 2
-0.248764610000E-01 12.5 2.0 3
#TRN !transport model specification
ECS Extended Corresponding States model (R134a reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?Donaldson, A.B. (1975). On the estimation of thermal conductivity of organic
? vapors. Ind. Eng. Chem., 14:325-328.\
?\
?Geller, V.Z., Artamonov, S.D., Zaporozhan, G.V., and Peredrii, V.G. (1974).
? Thermal conductivity of Freon-12. J. Eng. Phys., 27:842-846.\
?\
?Keyes, F.G. (1954). Thermal conductivity of gases. Trans. ASME, 76:809-816.\
?\
?Makita, T., Tanaka, Y., Morimoto, Y., Noguchi, M., and Kubota, H. (1981).
? Thermal conductivity of gaseous fluorocarbon refrigerants R12, R13, R22,
? and R23 under pressure. Int. J. Thermophysics, 2:249-268.\
?\
?Shankland, I.R. (1990). Transport properties of CFC alternatives. paper
? presented at AIChE Spring National Meeting, Orlando, Florida\
?\
?Sherratt, G.G. and Griffiths, E. (1939). A hot wire method for the thermal
? conductivity of gases. Phil. Mag., 27:68-75.\
?\
?Venart, J.E.S. and Mani, N. (1975). The thermal conductivity of R12. Trans.
? Canadian Soc. Mech. Engrs., 3:1-9.\
?\
?Yata, J., Minamiyama, T., and Tanaka, S. (1984). Measurement of thermal
?conductivity of liquid fluorocarbons. Int. J. Thermophysics, 5:209-218.\
?\
?Average absolute deviations of the fit from the experimental data were:\
? Donaldson: 2.18%; Geller: 1.86%; Keyes: 1.36%; Makita: 0.73%;
? Shankland: 1.70%; Sherratt: 1.55%; Venart: 1.29%; Yata: 2.32%;
? Overall: 1.36%\
?\
?DATA SOURCES FOR VISCOSITY\
?The ECS parameters for viscosity were based on the data of:\
?\
?Assael, M.J., Polimatidou, S.K., Vogel, E., and Wakeham, W.A. (1994).
? Measurements of the viscosity of R11, R12, R141b, and R152a in the
? temperature range 270-340 K at pressures up to 20 MPa.
? International Journal of Thermophysics, 15(4):575-589.\
?\
?Kumagai, A. and Takahashi, S. (1991).
? Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K.
? International Journal of Thermophysics, 12(1):105-117.\
?\
?Average absolute deviations of the fit from the experimental data were:\
? Assael: 0.64%; Kumagai: 2.45%; Overall: 1.00%\
?\
?Lennard-Jones parameters are estimated.\
?\
!end of info section
116.099 !lower temperature limit [K]
525.0 !upper temperature limit [K]
200000.0 !upper pressure limit [kPa]
15.13 !maximum density [mol/L]
FEQ R134a.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
0 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.0 !Lennard-Jones coefficient sigma [nm] for ECS method
0.0 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.3440d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
2 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.0524907 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
-0.0252897 0.0 1.0 0.0
2 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
9.9103d-1 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
2.9509d-3 0.0 1.0 0.0
#STN !surface tension specification
ST1 surface tension model of Okada and Watanabe (1988).
?LITERATURE REFERENCE \
?Okada, M. and Watanabe, K.,
? "Surface tension correlations for several fluorocarbon refrigerants,"
? Heat Transfer-Japanese Research, 17:35-52, 1988.\
?
!end of info section
116.099 !lower temperature limit [K]
385.12 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1 !number of terms in surface tension model
385.01 !critical temperature used by Okada & Watanabe (dummy)
0.05652 1.27 !sigma0 and n
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -