📄 r13.fld
字号:
0.27627 !critical compressibility for R12 used in correlation
0.17469 !acentric factor for fluid used in shape factor correlation
302.35 !critical temperature [K]
3915.0 !critical pressure [kPa]
5.50934 !critical density [mol/L]
3 !number of temperature coefficients for 'f' shape factor
-0.349641790d+0 0 !alpha1 of Huber & Ely
-0.907689146d+0 1 !alpha2 of Huber & Ely (log(Tr) term)
-0.653134886d-3 1
1 !number of density coefficients for 'f' shape factor
0.210751423d-2 1
2 !number of temperature coefficients for 'h' shape factor
0.924297063d+0 0 !beta1 of Huber & Ely
0.515294928d+0 1 !beta2 of Huber & Ely (log(Tr) term)
0 !number of density coefficients for 'h' shape factor
#AUX !auxiliary model specification
CP2 ideal gas heat capacity function
?\
!end of info section
173.0 !lower temperature limit [K]
500.0 !upper temperature limit [K]
0.0 !upper pressure limit [kPa]
0.0 !maximum density [mol/L]
1.0 1.0 !reducing parameters for T, Cp0
3 0 0 0 0 0 0 !Nterms: polynomial, exponential, cosh, sinh
15.32010608d+0 0.0
0.22223115d+0 1.0
-0.16422906d-3 2.0
#TRN !transport model specification
ECS Extended Corresponding States model (propane reference); fitted to data.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?DATA SOURCES FOR THERMAL CONDUCTIVITY\
?The ECS parameters for thermal conductivity were based on the data of:\
?\
?Makita, T., Tanaka, Y., Morimoto, Y., Noguchi, M., and Kubota, H. (1981).
? Thermal conductivity of gaseous fluorocarbon refrigerants R12, R13, R22,
? and R23 under pressure. Int. J. Thermophysics, 2:249-268.\
?\
?Yata, J., Minamiyama, T., and Tanaka, S. (1984).
? Measurement of thermal conductivity of liquid fluorocarbons.Int. J. Thermophysics, 5:209-218.\
?
?Zvetkob, O. B.; Laptev, Yu. A.; and Vasilkov, A. I. (1977),"The Results of Measurements of
? Thermal Conductivity of Gaseous Frons with the Heating Wire Method"
? Mashinyi i Apparatyi Cholodilnoj, Kriogennoh Techniki i Kondizionirovaniyi Vosducha,
? Collect No. 2, 54-6, Leningradskij Tech. Inst.\
?
?Geller, V. Z.(1975)"Investigation of the Thermal Conductivity of Methane Row Freons"
? Teplofiz. Svoistva Veshchestv Mater., No. 8, Rabinovich, V. A., Ed., Standards Publ.: Moscow, 162-76.
?
?Sadyikov, A. Kh.(1978)" Experimental Investigation of Some Thermophysical Properties
? of Polyoxy Compounds",Ph.D. Thesis, Kazan, Tech. Inst. for Regrigeration, Kazan, USSR
?
?Potapov, M. D. (1988),"The Thermal Conductivity of Liquid Binary Mixtures
? of Halogenated Hydrocarbons", Ph. D. Thesis, OTIPP, Odessa.\
?
?Sadyikov, A. K.; Brykov, V. P.; and Mukhamedzyanov, G. K. (1975),"Thermal Conductivity
? of Low-Temperature Freons",Teplo- Massoobmen Khim. Tekhnol. Collect. Vol., No. 3, 31-5.
?
?Geller, V. Z.(1976)"Thermal Conductivity of Some Liquid Refrigerants at Low Temperature"
? Teplofiz. Svoistva Veshchestv Mter., Collect. Vol., No. 9, Standards Publ.: Moscow, 147-61.\
?
?Average absolute deviations of the fit from the experimental data were:\
? Makita: 8.48%; Yata: 1.69%; Zvetkob: 1.82%; Geller: 4.94%; Sadyikov(1978):1.76;
? Potapov:1.17%; Sadyikov(1975): 7.14%; Geller(1976): 1.66%; Overall: 5.90%
?
?DATA SOURCES FOR VISCOSITY\
?The ECS parameters for viscosity were based on the data of:\
?
?Diller, D. E.; and Van Poolen, L. J.(1989) "Measurement of Viscosities of Saturated
? and Compressed Fluid Chlorotrifl- uoromethane (R13)", Cryogenics 29:1063-6.
?
?Geller, V. Z.; Ivanchenko, S. I.; and Kronberg, A. V.(1975) "Study of Dynamic Viscosity
? Coefficient of Methane Type Freons",Teplofiz. Svoistva Veshchestv. Mater., Collect.
? Vol. No. , V. A. Rabinovich, Ed., Standards Publ.: Moscow, pg. 148-61.
?
?Geller, V. Z. (1980); Investigation of the Viscosity of Freons of the Methane, Ethane,
? and Propane Types. Summary of Experimental Data,Teplofiz. Svoistva Veshchestv. Mater.,
? No. 15, Sychev, V. V., Ed., Standards Publ.: Moscow, pp. 89-114.
?
?Kronberg, A. V. (1979) "Experimental and Theoretical Investigation of the Viscosity of
? Methane and Ethane Row's Refrigerants", Ph.D. Dissertation, Azer. Inst. Neft. Khim.,
? Baku, USSR
?
?Takahashi, M., Takahashi, S. and Iwasaki, H. (1985). Viscosity of gaseous
? chlorotrifluoromethane(R13) under pressure", J. Chem. Eng. Data 30:14-17.
?\
?Average absolute deviations of the fit from the experimental data were:\
? Diller: 4.54%; Geller(1975): 5.71%; Geller(1980): 3.36%;
? Kronberg: 1.87%; Takahashi: 0.64%
? Overall: 2.96%
?\
?Lennard-Jones parameters are from:
? Takahashi, M., Takahashi, S. and Iwasaki, H. (1985). Viscosity of gaseous
? chlorotrifluoromethane(R13) under pressure", J. Chem. Eng. Data 30:14-17.
?\
!end of info section
92.0 !lower temperature limit [K]
403.0 !upper temperature limit [K]
35000.0 !upper pressure limit [kPa]
17.85 !maximum density [mol/L]
FEQ propane.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.4971 !Lennard-Jones coefficient sigma [nm] for ECS method
204.0 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
2 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.07447d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
6.42373d-7 1.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
2 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
0.976177d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
1.48047d-02 0.0 1.0 0.0 !coeff, power of Tr, power of Dr, spare
2 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.13940d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
-3.65562d-02 0.0 1.0 0.0 !coeff, power of Tr, power of Dr, spare
TK6 !pointer to critical enhancement auxiliary function
#AUX !thermal conductivity critical enhancement model
TK6 simplified thermal conductivity critical enhancement of Olchowy and Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.
?\
?as applied to CO2 by:
?\
?Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R.
? and Millat, J.,
? "The transport properties of carbon dioxide,"
? J. Phys. Chem. Ref. Data, 19:763-808, 1990.
?\
!end of info section
92.0 !lower temperature limit [K]
403.0 !upper temperature limit [K]
35000.0 !upper pressure limit [kPa]
17.85 !maximum density [mol/L]
9 0 0 0 !# terms: CO2-terms, spare, spare, spare
1.0 1.0 1.0 !reducing par for T, rho, tcx (mW/m-K)
0.630d0 !gnu (universal exponent)
1.239d0 !gamma (universal exponent)
1.03d0 !R0 (universal amplitude)
0.063d0 !z (universal exponent--not used for t.c., only viscosity)
1.00d0 !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
0.194d-9 !xi0 (amplitude) [m]
0.0496 !gam0 (amplitude) [-]
3.49636d-10 !qd_inverse (modified effective cutoff parameter) [m]; fit to data
453.00d+00 !tref (reference temperature)=1.5*Tc [K]
#STN !surface tension specification
ST1 surface tension model of Okada and Watanabe (1988).
?LITERATURE REFERENCE \
?Okada, M. and Watanabe, K.,
? "Surface tension correlations for several fluorocarbon refrigerants,"
? Heat Transfer-Japanese Research, 17:35-52, 1988.\
?\
!end of info section
90.0 !lower temperature limit [K]
301.91 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1 !number of terms in surface tension model
301.91 !critical temperature used by Okada & Watanabe (dummy)
0.05060 1.28 !sigma0 and n
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -