📄 r123.fld
字号:
?0.5% at high pressures) in density, 1% (in the vapor phase) to 2% in
?heat capacity, 1% (in the vapor phase) to 2% in the speed of sound, and
?0.2% in vapor pressure, except in the critical region.
?\
!end of info section
166.0 !lower temperature limit [K]
600.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
11.62 !maximum density [mol/L]
CPP !pointer to Cp0 model
152.931 !molecular weight [g/mol]
166.0 !triple point temperature [K]
0.0041534 !pressure at triple point [kPa]
11.613 !density at triple point [mol/L]
300.96 !normal boiling point temperature [K]
0.283 !acentric factor
456.82 3672.0 3.6160098 !Tc [K], pc [kPa], rhoc [mol/L]
456.82 3.6160098 !reducing parameters [K, mol/L]
8.31451 !gas constant [J/mol-K]
12 4 0 0 0 0 !# terms, # coeff/term for: "normal" terms, critical, spare
0.111697300000E+01 0.25 1.0 0 !a(i),t(i),d(i),l(i)
-0.307459300000E+01 1.25 1.0 0
0.510638730000E+00 1.5 1.0 0
0.944788120000E-01 0.25 3.0 0
0.295327520000E-03 0.875 7.0 0
0.669744380000E+00 2.375 1.0 1
0.964385750000E+00 2.0 2.0 1
-0.148654240000E-01 2.125 5.0 1
-0.492219590000E+00 3.5 1.0 2
-0.228310380000E-01 6.5 1.0 2
-0.140748600000E+00 4.75 4.0 2
-0.251173010000E-01 12.5 2.0 3
#TCX !thermal conductivity model specification
TC1 pure fluid thermal conductivity model of Laesecke et al. (1996)
?LITERATURE REFERENCE\
?Laesecke, A., Perkins, R.A., and Howley, J.B.,
? "An improved correlation for the thermal conductivity of HCFC123
? (2,2-dichloro-1,1,1-trifluoroethane),"
? Int. J. Refrigeration, 19:231-238, 1996.
?\
?The uncertainty in thermal conductivity is 2%.
?\
!end of info section
166.0 !lower temperature limit [K]
600.0 !upper temperature limit [K]
67000.0 !upper pressure limit [kPa]
12.42 !maximum density [mol/L] (= 1900 kg/m^3)
2 0 !# terms for dilute gas function: numerator, denominator
1.0 1.0 !reducing parameters for T, tcx
-0.00778d0 0.00d0 !coeff, power in T
5.695d-5 1.00d0
12 0 !# terms for background gas function: numerator, denominator
456.831 3.596417 1.0 !reducing par for T (= Tc), rho (= Dc), tcx
0.642894d-01 -1.50d0 1.00d0 0.00d0 !coeff, powers of tau=T/Tc (= -power of Tc/T), del, spare for future use
-0.530474d-01 -2.00d0 1.00d0 0.00d0
0.453522d-04 -6.00d0 1.00d0 0.00d0
-0.139928d+00 0.00d0 2.00d0 0.00d0
0.166540d+00 -0.50d0 2.00d0 0.00d0
-0.162656d-01 -1.50d0 2.00d0 0.00d0
0.136819d+00 0.00d0 3.00d0 0.00d0
-0.183291d+00 -0.50d0 3.00d0 0.00d0
0.357146d-01 -1.50d0 3.00d0 0.00d0
-0.231210d-01 0.00d0 4.00d0 0.00d0
0.341945d-01 -0.50d0 4.00d0 0.00d0
-0.757341d-02 -1.50d0 4.00d0 0.00d0
TK1 !pointer to critical enhancement auxiliary function
#AUX !thermal conductivity critical enhancement model
TK1 pure fluid thermal conductivity model of Laesecke et al. (1996)
?LITERATURE REFERENCE\
?Laesecke, A., Perkins, R.A., and Howley, J.B.,
? "An improved correlation for the thermal conductivity of HCFC123
? (2,2-dichloro-1,1,1-trifluoroethane),"
? Int. J. Refrigeration, 19:231-238, 1996.
?\
!end of info section
166.0 !lower temperature limit [K]
600.0 !upper temperature limit [K]
67000.0 !upper pressure limit [kPa]
12.42 !maximum density [mol/L] (= 1900 kg/m^3)
1 0 2 0 !# terms: polynomial-numerator, poly-denom, exp, spare
-456.831 3.596417 1.0 !reducing par for T (-Tc indicates tau = Tred/t), rho (= Dc), tcx in polynomial term
0.486742d-02 0.0d0 0.0d0 0.0d0 0.0d0 0 !a13
-456.831d0 3.596417d0 1.0d0 !reducing par for T (-Tc indicates tau = Tred/t), rho (= Dc), tcx in exponential term
-100.0d0 -1.0d0 4 0.0d0 0 0 !a14*(tau - 1)**4
-7.08535d0 0.0d0 0 -1.0d0 2 0 !a15*(del - 1)**2
#ETA !viscosity model specification
VS1 pure fluid viscosity model of Tanaka and Sotani (1995).
?LITERATURE REFERENCE \
?Tanaka, Y. and Sotani, T.,
? "Transport Properties (Thermal Conductivity and Viscosity),"
? in McLinden, M.O., editor. R123--Thermodynamic and physical
? properties. Paris: International Institute of Refrigeration, 1995.
? see also: Int. J. Thermophys., 17(2):293-328, 1996.
?\
?The uncertainty in viscosity is 5%.
?\
!end of info section
166.0 !lower temperature limit [K]
600.0 !upper temperature limit [K]
40000.0 !upper pressure limit [kPa]
15.90 !maximum density [mol/L]
4 !number of terms associated with dilute-gas function
NUL !pointer to collision integral model (not used here)
0.5909 !Lennard-Jones coefficient sigma [nm]
275.16 !Lennard-Jones coefficient epsilon/kB [K]
1.0 1.0 !reducing parameters for T, eta
0.0d0 0.5d0 !Chapman-Enskog term (not used here)
-2.273638d+0 0.0d0 !polynomial term: coeff, power of T
5.099859d-2 1.0d0
-2.402786d-5 2.0d0
0 !# initial density terms (these are merged with residual term)
1 6 1 2 0 0 !# resid terms: close-packed density; simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
1.0 6.538897d-3 1.0 !reducing parameters for T, rho (= 1/MW), eta
1.828263d+3 0.00 0.00 0.00 0 !rho_0; powers of tau, del, del0; power of del in exponential [0 indicated no exponential term present]
-1.762849d+2 0.00 0.00 0.00 0 !d0/rho_0
-2.226484d-2 0.00 1.00 0.00 0 !const term in Eqn 2.8 (the initial density term)
5.550623d-5 1.00 1.00 0.00 0 !temperature term in Eqn 2.8
-1.009812d-1 0.00 1.00 0.00 0 !d1 in Eqn 2.9
6.161902d-5 0.00 2.00 0.00 0 !d2
-8.840480d-8 0.00 3.00 0.00 0 !d3
-3.222951d+5 0.00 0.00 0.00 0 !d0 in numerator of rational polynomial
1.000000d+0 0.00 1.00 0.00 0 !rho in denominator of rational polynomial
-1.000000d+0 0.00 0.00 1.00 0 !rho_0 in denominator of rational polynomial
NUL !pointer to critical enhancement auxiliary function (none used)
@TRN !transport model specification
ECS Extended Corresponding States model (R134a reference); predictive mode.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?Thermal conductivity data used in the development of the extended corresponding
? states method were taken from:\
?Assael, M. J. and Karagiannidis, E.
? Measurements of the Thermal Conductivity of R22, R123, and R134a in the
? Temperature Range 250-340 K at Pressures up to 30 MPa
? J Int. J. Thermophysics, V 14, N 2. P 183-197, 1993\
?\
?Lennard-Jones parameters from:\
?Nabizadeh, H. and Mayinger, F.,
? "Viscosity of gaseous R123, R134a and R142b,"
? High Temperatures - High Pressures, 24:221, 1992.
?\
!end of info section
166.0 !lower temperature limit [K]
600.0 !upper temperature limit [K]
40000.0 !upper pressure limit [kPa]
11.60 !maximum density [mol/L]
FEQ R134a.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.5909 !Lennard-Jones coefficient sigma [nm] for ECS method
275.16 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.3200d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
1 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
1 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
#STN !surface tension specification
ST1 surface tension model of Okada and Higashi (1995).
?LITERATURE REFERENCE \
?Okada, M. and Higashi, Y.,
? "Surface Tension," section 3 in R123--Thermodynamic and physical properties,
? Paris: International Institute of Refrigeration, 1995.
?\
!end of info section
166.0 !lower temperature limit [K] (Okada lists 237 K, should extrapolate)
456.831 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1 !number of terms in surface tension model
456.831 !critical temperature used by Okada & Higashi (dummy)
0.05602 1.235 !sigma0 and n
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -