⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r123.fld

📁 一个关于物性计算的软件
💻 FLD
📖 第 1 页 / 共 2 页
字号:
?0.5% at high pressures) in density, 1% (in the vapor phase) to 2% in
?heat capacity, 1% (in the vapor phase) to 2% in the speed of sound, and
?0.2% in vapor pressure, except in the critical region.
?\
!end of info section
166.0              !lower temperature limit [K]
600.0              !upper temperature limit [K]
100000.0           !upper pressure limit [kPa]
11.62              !maximum density [mol/L]
CPP                                    !pointer to Cp0 model
152.931                                !molecular weight [g/mol]
166.0                                  !triple point temperature [K]
0.0041534                              !pressure at triple point [kPa]
11.613                                 !density at triple point [mol/L]
300.96                                 !normal boiling point temperature [K]
0.283                                  !acentric factor
456.82       3672.0       3.6160098    !Tc [K], pc [kPa], rhoc [mol/L]
456.82                    3.6160098    !reducing parameters [K, mol/L]
8.31451                                !gas constant [J/mol-K]
      12  4      0  0       0  0       !# terms, # coeff/term for:  "normal" terms, critical, spare
 0.111697300000E+01  0.25    1.0     0 !a(i),t(i),d(i),l(i)
-0.307459300000E+01  1.25    1.0     0
 0.510638730000E+00  1.5     1.0     0
 0.944788120000E-01  0.25    3.0     0
 0.295327520000E-03  0.875   7.0     0
 0.669744380000E+00  2.375   1.0     1
 0.964385750000E+00  2.0     2.0     1
-0.148654240000E-01  2.125   5.0     1
-0.492219590000E+00  3.5     1.0     2
-0.228310380000E-01  6.5     1.0     2
-0.140748600000E+00  4.75    4.0     2
-0.251173010000E-01 12.5     2.0     3


#TCX               !thermal conductivity model specification
TC1  pure fluid thermal conductivity model of Laesecke et al. (1996)
?LITERATURE REFERENCE\
?Laesecke, A., Perkins, R.A., and Howley, J.B.,
? "An improved correlation for the thermal conductivity of HCFC123
? (2,2-dichloro-1,1,1-trifluoroethane),"
? Int. J. Refrigeration, 19:231-238, 1996.
?\
?The uncertainty in thermal conductivity is 2%.
?\
!end of info section
166.0              !lower temperature limit [K]
600.0              !upper temperature limit [K]
67000.0            !upper pressure limit [kPa]
12.42              !maximum density [mol/L] (= 1900 kg/m^3)
2   0              !# terms for dilute gas function:  numerator, denominator
1.0     1.0        !reducing parameters for T, tcx
-0.00778d0   0.00d0   !coeff, power in T
 5.695d-5    1.00d0
12   0             !# terms for background gas function:  numerator, denominator
456.831     3.596417     1.0              !reducing par for T (= Tc), rho (= Dc), tcx
 0.642894d-01  -1.50d0   1.00d0   0.00d0  !coeff, powers of tau=T/Tc (= -power of Tc/T), del, spare for future use
-0.530474d-01  -2.00d0   1.00d0   0.00d0
 0.453522d-04  -6.00d0   1.00d0   0.00d0
-0.139928d+00   0.00d0   2.00d0   0.00d0
 0.166540d+00  -0.50d0   2.00d0   0.00d0
-0.162656d-01  -1.50d0   2.00d0   0.00d0
 0.136819d+00   0.00d0   3.00d0   0.00d0
-0.183291d+00  -0.50d0   3.00d0   0.00d0
 0.357146d-01  -1.50d0   3.00d0   0.00d0
-0.231210d-01   0.00d0   4.00d0   0.00d0
 0.341945d-01  -0.50d0   4.00d0   0.00d0
-0.757341d-02  -1.50d0   4.00d0   0.00d0
TK1                !pointer to critical enhancement auxiliary function


#AUX               !thermal conductivity critical enhancement model
TK1  pure fluid thermal conductivity model of Laesecke et al. (1996)
?LITERATURE REFERENCE\
?Laesecke, A., Perkins, R.A., and Howley, J.B.,
? "An improved correlation for the thermal conductivity of HCFC123
? (2,2-dichloro-1,1,1-trifluoroethane),"
? Int. J. Refrigeration, 19:231-238, 1996.
?\
!end of info section
166.0              !lower temperature limit [K]
600.0              !upper temperature limit [K]
67000.0            !upper pressure limit [kPa]
12.42              !maximum density [mol/L] (= 1900 kg/m^3)
1  0  2  0         !# terms:  polynomial-numerator, poly-denom, exp, spare
-456.831     3.596417     1.0      !reducing par for T (-Tc indicates tau = Tred/t), rho (= Dc), tcx in polynomial term
 0.486742d-02  0.0d0  0.0d0  0.0d0  0.0d0        0 !a13
-456.831d0   3.596417d0   1.0d0    !reducing par for T (-Tc indicates tau = Tred/t), rho (= Dc), tcx in exponential term
-100.0d0      -1.0d0    4    0.0d0    0          0 !a14*(tau - 1)**4
-7.08535d0     0.0d0    0   -1.0d0    2          0 !a15*(del - 1)**2


#ETA               !viscosity model specification
VS1  pure fluid viscosity model of Tanaka and Sotani (1995).
?LITERATURE REFERENCE \
?Tanaka, Y. and Sotani, T.,
? "Transport Properties (Thermal Conductivity and Viscosity),"
? in McLinden, M.O., editor. R123--Thermodynamic and physical
? properties. Paris: International Institute of Refrigeration, 1995.
? see also:  Int. J. Thermophys., 17(2):293-328, 1996.
?\
?The uncertainty in viscosity is 5%.
?\
!end of info section
166.0              !lower temperature limit [K]
600.0              !upper temperature limit [K]
40000.0            !upper pressure limit [kPa]
15.90              !maximum density [mol/L]
4                  !number of terms associated with dilute-gas function
NUL                !pointer to collision integral model (not used here)
0.5909             !Lennard-Jones coefficient sigma [nm]
275.16             !Lennard-Jones coefficient epsilon/kB [K]
1.0    1.0         !reducing parameters for T, eta
0.0d0  0.5d0       !Chapman-Enskog term (not used here)
-2.273638d+0 0.0d0 !polynomial term:  coeff, power of T
 5.099859d-2 1.0d0
-2.402786d-5 2.0d0
0                  !# initial density terms (these are merged with residual term)
1 6 1 2 0 0        !# resid terms:  close-packed density;  simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
1.0     6.538897d-3    1.0         !reducing parameters for T, rho (= 1/MW), eta
 1.828263d+3  0.00  0.00  0.00  0  !rho_0; powers of tau, del, del0; power of del in exponential [0 indicated no exponential term present]
-1.762849d+2  0.00  0.00  0.00  0  !d0/rho_0
-2.226484d-2  0.00  1.00  0.00  0  !const term in Eqn 2.8 (the initial density term)
 5.550623d-5  1.00  1.00  0.00  0  !temperature term in Eqn 2.8
-1.009812d-1  0.00  1.00  0.00  0  !d1 in Eqn 2.9
 6.161902d-5  0.00  2.00  0.00  0  !d2
-8.840480d-8  0.00  3.00  0.00  0  !d3
-3.222951d+5  0.00  0.00  0.00  0  !d0 in numerator of rational polynomial
 1.000000d+0  0.00  1.00  0.00  0  !rho in denominator of rational polynomial
-1.000000d+0  0.00  0.00  1.00  0  !rho_0 in denominator of rational polynomial
NUL                !pointer to critical enhancement auxiliary function (none used)


@TRN               !transport model specification
ECS  Extended Corresponding States model (R134a reference); predictive mode.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?\
?Thermal conductivity data used in the development of the extended corresponding
? states method were taken from:\
?Assael, M. J. and Karagiannidis, E.
? Measurements of the Thermal Conductivity of R22, R123, and R134a in the
? Temperature Range 250-340 K at Pressures up to 30 MPa
? J Int. J. Thermophysics, V 14, N 2. P 183-197, 1993\
?\
?Lennard-Jones parameters from:\
?Nabizadeh, H. and Mayinger, F.,
? "Viscosity of gaseous R123, R134a and R142b,"
? High Temperatures - High Pressures, 24:221, 1992.
?\
!end of info section
166.0              !lower temperature limit [K]
600.0              !upper temperature limit [K]
40000.0            !upper pressure limit [kPa]
11.60              !maximum density [mol/L]
FEQ R134a.fld
VS1                !model for reference fluid viscosity
TC1                !model for reference fluid thermal conductivity
1                  !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.5909             !Lennard-Jones coefficient sigma [nm] for ECS method
275.16             !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1  0  0                       !number of terms in f_int term in Eucken correlation, spare1, spare2
 1.3200d-3   0.0   0.0   0.0  !coeff, power of T, spare 1, spare 2
1  0  0                       !number of terms in psi (visc shape factor): poly,spare1,spare2
 1.0000d+0   0.0   0.0   0.0  !coeff, power of Tr, power of Dr, spare
1  0  0                       !number of terms in chi (t.c. shape factor): poly,spare1,spare2
 1.0000d+0   0.0   0.0   0.0  !coeff, power of Tr, power of Dr, spare


#STN        !surface tension specification
ST1  surface tension model of Okada and Higashi (1995).
?LITERATURE REFERENCE \
?Okada, M. and Higashi, Y.,
? "Surface Tension," section 3 in R123--Thermodynamic and physical properties,
? Paris: International Institute of Refrigeration, 1995.
?\
!end of info section
166.0              !lower temperature limit [K] (Okada lists 237 K, should extrapolate)
456.831            !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
1                           !number of terms in surface tension model
456.831                     !critical temperature used by Okada & Higashi (dummy)
 0.05602     1.235          !sigma0 and n


@END
c        1         2         3         4         5         6         7         8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -