📄 r134a.fld
字号:
?\
?The uncertainty in thermal conductivity is 5%.
?\
!end of info section
169.85 !lower temperature limit [K]
455.0 !upper temperature limit [K]
20000.0 !upper pressure limit [kPa]
17.05 !maximum density [mol/L]
2 0 !# terms for dilute gas function: numerator, denominator
1.0 1.0 !reducing parameters for T, tcx
-1.05248d-2 0.00d0 !coeff, power in T
8.00982d-5 1.00d0
4 0 !# terms for background gas function: numerator, denominator
1.0 5.049886 2.055d-03 !reducing par for T, rho (rho_c), tcx
1.836526d+0 0.00d0 1.00d0 0.00d0 !coeff, powers of t, rho, spare for future use
5.126143d+0 0.00d0 2.00d0 0.00d0
-1.436883d+0 0.00d0 3.00d0 0.00d0
6.261441d-1 0.00d0 4.00d0 0.00d0
TK3 !pointer to critical enhancement auxiliary function
#AUX !thermal conductivity critical enhancement model
TK3 simplified thermal conductivity critical enhancement of Olchowy & Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.\
?\
?as applied to R134a by:\
?Perkins, R. (1997). National Institute of Standards and Technology, personal
? communication, fit of IUPAC round robin data.\
?\
!end of info section
240.0 !lower temperature limit [K]
410.0 !upper temperature limit [K]
20000.0 !upper pressure limit [kPa]
14.70 !maximum density [mol/L]
9 0 0 0 !# terms: critical-terms, spare, spare, spare
1.0 1.0 1.0 !reducing par for T, rho, tcx
0.630 !gnu (universal exponent)
1.239 !gamma (universal exponent)
1.03 !R0 (universal amplitude)
0.063 !z (universal exponent--not used for t.c., only viscosity)
1.00 !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
1.94d-10 !xi0 (amplitude) [m]
0.0496 !gam0 (amplitude) [-]
5.285356d-10 !qd_inverse (modified effective cutoff parameter) [m]
561.411 !tref (reference temperature) [= 1.5 * 374.274 K]
#ETA !viscosity model specification
VS1 pure fluid viscosity model of Laesecke (1998).
?LITERATURE REFERENCE \
?Laesecke, A., NIST (laesecke@boulder.nist.gov); Unpublished 1998 correlation R134aFitSelDV
?
?\
?The uncertainty in viscosity is 1.5% along the saturated liquid line, 3% in
?the liquid phase, 0.5% in the dilute gas, 3-5% in the vapor phase, and 5%
?in the supercritical region, rising to 8% at pressures above 40 MPa.
?Below 200 K, the uncertainty is 8%.
?\
!end of info section
169.85 !lower temperature limit [K]
500.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
17.05 !maximum density [mol/L] (rho on melting line at 100 MPa)
1 !number of terms associated with dilute-gas function
CI1 !pointer to reduced effective collision cross-section model
0.468932 !Lennard-Jones coefficient sigma [nm]
299.363 !Lennard-Jones coefficient epsilon/kappa [K]
1.0 1.0 !reducing parameters for T, eta
0.215729d0 0.50d0 !=0.021357*SQRT(MW) [Chapman-Enskog term]
9 !number of terms for initial density dependence
299.363 0.0620984 !reducing parameters for T (=eps/k), etaB2 (= 0.6022137*sigma**3)
-0.19572881d+2 0.00d0 !coeff, power in T* = T/(eps/k)
0.21973999d+3 -0.25d0
-0.10153226d+4 -0.50d0
0.24710125d+4 -0.75d0
-0.33751717d+4 -1.00d0
0.24916597d+4 -1.25d0
-0.78726086d+3 -1.50d0
0.14085455d+2 -2.50d0
-0.34664158d+0 -5.50d0
-3 7 1 2 0 0 !# resid terms: close-packed density; simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
374.21 5.0170613 1.0d3 !reducing parameters for T, rho, eta (Laesecke correlation in terms of mPa-s, convert to uPa-s)
3.163695635587490 0.00 !alternative form for del10; numerator term
-0.8901733752064137d-1 1.00 !alternative form for del10; denominator terms
0.1000352946668359 2.00 !alternative form for del10; denominator terms
-0.2069007192080741d-1 0.00 1.00 0.00 0 !beta1; powers of tau, del, del0; power of del in exponential [0 indicated no exponential term present]
0.3560295489828222d-3 -6.00 2.00 0.00 0 !beta2
0.2111018162451597d-2 -2.00 2.00 0.00 0 !beta3
0.1396014148308975d-1 -0.50 2.00 0.00 0 !beta4
-0.4564350196734897d-2 2.00 2.00 0.00 0 !beta5
-0.3515932745836890d-2 0.00 3.00 0.00 0 !beta6
-0.2147633195397038 0.00 0.00 -1.00 0 !beta7
0.2147633195397038 0.00 0.00 0.00 0 !beta7 in non-simple poly term
1.000000d+0 0.00 0.00 1.00 0 !del0 term in denominator
-1.000000d+0 0.00 1.00 0.00 0 !-del term in denominator
NUL !pointer to critical enhancement auxiliary function (none used)
#AUX !reduced effective collision cross-section model specification
CI1 reduced effective collision cross-section model (empirical form in terms of log(T*))
?LITERATURE REFERENCE \
?reduced effective collision cross-section of Wilhelm & Vogel as reported by:\
?Laesecke, A.,(laesecke@boulder.nist.gov); Unpublished correlation R134aFitSelDV
? see ftp://ftp.boulder.nist.gov/pub/fluids/NIST_Data/Viscosity/StandardReferenceCorrelations/
?\
!end of info section
134.86 !lower temperature limit [K]
500.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
3 !number of terms
0.355404d+0 0 !coeff, power of Tstar
-0.464337d+0 1
0.257353d-1 2
@TRN !transport model specification
ECS Extended Corresponding States model (R134a reference); predictive mode.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?
!end of info section
169.85 !lower temperature limit [K]
600.0 !upper temperature limit [K]
70000.0 !upper pressure limit [kPa]
15.60 !maximum density [mol/L]
FEQ R134a.fld
VS1 !model for reference fluid viscosity
TC1 !model for reference fluid thermal conductivity
1 !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.50647 !Lennard-Jones coefficient sigma [nm] for ECS method
288.82 !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1 0 0 !number of terms in f_int term in Eucken correlation, spare1, spare2
1.3200d-3 0.0 0.0 0.0 !coeff, power of T, spare 1, spare 2
1 0 0 !number of terms in psi (visc shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
1 0 0 !number of terms in chi (t.c. shape factor): poly,spare1,spare2
1.0000d+0 0.0 0.0 0.0 !coeff, power of Tr, power of Dr, spare
#STN !surface tension specification
ST1 surface tension model of Okada and Higashi (1994).
?LITERATURE REFERENCE \
?Okada, M. and Higashi, Y.,
? "Surface tension correlation of HFC-134a and HCFC-123,"
? CFCs, The Day After (Proceedings of the Joint Meeting of IIR
? Commissions B1, B2, E1, and E2), Padua, Italy, 541-548, 1994.\
? as reported by:\
?Tillner-Roth, R. and Krauss, R.,
? "R134a--Extended Thermophysical Properties,"
? Paris: International Institute of Refrigeration, 1995.\
?
!end of info section
169.85 !lower temperature limit [K] (Higashi states 230 K, but should extrapolate)
374.21 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
1 !number of terms in surface tension model
374.21 !critical temperature used in fit (dummy)
0.06016 1.260 !sigma0 and n
#PS !vapor pressure equation
PS6 vapor pressure equation of Tillner-Roth & Baehr (1994).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
169.85 !lower temperature limit [K]
374.18 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
374.18 4056.29 !reducing parameters
4 0 0 0 0 0 !number of terms in equation
-7.686556 2. !coefficients and exponents
2.311791 3.
-2.039554 4.
-3.583758 8.
#DL !saturated liquid density equation
DL2 saturated liquid density equation of Tillner-Roth & Baehr (1994).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
169.85 !lower temperature limit [K]
374.18 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
374.18 5.0787988 !reducing parameters
3 0 0 0 0 0 !number of terms in equation
1.706155924 1. !coefficients and exponents
0.937553068 2.
0.373002702 10.
#DV !saturated vapor density equation
DV4 saturated vapor density equation of Tillner-Roth & Baehr (1994).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
169.85 !lower temperature limit [K]
374.18 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
374.18 5.06566567 !reducing parameters
5 0 0 0 0 0 !number of terms in equation
-2.837294 1. !coefficients and exponents
-7.875988 2.
4.478586 1.5
-14.140125 6.75
-52.361297 16.5
@END
c 1 2 3 4 5 6 7 8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890
Older formulation of Laesecke that has been replaced with the 1998 unpublished
version given above:
@ETA !viscosity model specification
VS1 pure fluid viscosity model of Laesecke (2000).
?LITERATURE REFERENCE \
?Laesecke, A.,
? "Data reassessment and full surface correlation of
? the viscosity of HFC-134a (1,1,1,2-tetrafluoroethane),"
? submitted to J. Phys. Chem. Ref. Data, 2000.
?\
?The uncertainty in viscosity is 1.5% along the saturated liquid line, 3% in
?the liquid phase, 0.5% in the dilute gas, 3-5% in the vapor phase, and 5%
?in the supercritical region, rising to 8% at pressures above 40 MPa.
?Below 200 K, the uncertainty is 8%.
?\
!end of info section
169.85 !lower temperature limit [K]
500.0 !upper temperature limit [K]
100000.0 !upper pressure limit [kPa]
17.05 !maximum density [mol/L] (rho on melting line at 100 MPa)
1 !number of terms associated with dilute-gas function
CI1 !pointer to reduced effective collision cross-section model
0.50647 !Lennard-Jones coefficient sigma [nm]
288.82 !Lennard-Jones coefficient epsilon/kappa [K]
1.0 1.0 !reducing parameters for T, eta
0.215729d0 0.50d0 !=0.021357*SQRT(MW) [Chapman-Enskog term]
13 !number of terms for initial density dependence
288.82 0.07823693 !reducing parameters for T (=eps/k), etaB2 (= 0.6022137*sigma**3)
-0.17999496d+1 0.00d0 !coeff, power in T* = T/(eps/k)
0.46692621d+2 -0.50d0
-0.53460794d+3 -1.00d0
0.33604074d+4 -1.50d0
-0.13019164d+5 -2.00d0
0.33414230d+5 -2.50d0
-0.58711743d+5 -3.00d0
0.71426686d+5 -3.50d0
-0.59834012d+5 -4.00d0
0.33652741d+5 -4.50d0
-0.12027350d+5 -5.00d0
0.24348205d+4 -5.50d0
-0.20807957d+3 -6.00d0
2 3 2 2 0 0 !# resid terms: close-packed density; simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
374.18 4.9788302 1.0d3 !reducing parameters for T, rho, eta (Laesecke correlation in terms of mPa-s, convert to uPa-s)
3.073830d+0 0.00 !c4; power of tau for del0
0.482539055d+0 1.00 !c3*c4
-0.331249d-1 0.00 1.00 0.00 0 !c1; powers of tau, del, del0; power of del in exponential [0 indicated no exponential term present]
-0.468509d-3 0.00 2.00 0.00 0 !c2
0.306398d+0 0.00 0.00 -1.00 0 !-c5
-0.306398d+0 0.00 0.00 0.00 0 !c5
0.215221d+0 0.00 1.00 0.00 0 !c6
1.000000d+0 0.00 0.00 1.00 0 !del0 term in denominator
-1.000000d+0 0.00 1.00 0.00 0 !-del term in denominator
NUL !pointer to critical enhancement auxiliary function (none used)
#AUX !reduced effective collision cross-section model specification
CI1 reduced effective collision cross-section model (empirical form in terms of log(T*))
?LITERATURE REFERENCE \
?reduced effective collision cross-section of Wilhelm & Vogel as reported by:\
?Laesecke, A.,
? "Data reassessment and full surface correlation of
? the viscosity of HFC-134a (1,1,1,2-tetrafluoroethane),"
? submitted to J. Phys. Chem. Ref. Data, 2000.
?\
!end of info section
134.86 !lower temperature limit [K]
500.0 !upper temperature limit [K]
0.0 !(dummy) upper pressure limit
0.0 !(dummy) maximum density
5 !number of terms
0.2218816d+0 0 !coeff, power of Tstar
-0.5079322d+0 1
0.1285776d+0 2
-0.8328165d-2 3
-0.2713173d-2 4
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -