⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r134a.fld

📁 一个关于物性计算的软件
💻 FLD
📖 第 1 页 / 共 2 页
字号:
?\
?The uncertainty in thermal conductivity is 5%.
?\
!end of info section
169.85             !lower temperature limit [K]
455.0              !upper temperature limit [K]
20000.0            !upper pressure limit [kPa]
17.05              !maximum density [mol/L]
2   0              !# terms for dilute gas function:  numerator, denominator
1.0     1.0        !reducing parameters for T, tcx
-1.05248d-2    0.00d0   !coeff, power in T
 8.00982d-5    1.00d0
4   0              !# terms for background gas function:  numerator, denominator
1.0    5.049886     2.055d-03             !reducing par for T, rho (rho_c), tcx
 1.836526d+0   0.00d0   1.00d0   0.00d0   !coeff, powers of t, rho, spare for future use
 5.126143d+0   0.00d0   2.00d0   0.00d0
-1.436883d+0   0.00d0   3.00d0   0.00d0
 6.261441d-1   0.00d0   4.00d0   0.00d0
TK3                !pointer to critical enhancement auxiliary function


#AUX               !thermal conductivity critical enhancement model
TK3  simplified thermal conductivity critical enhancement of Olchowy & Sengers
?LITERATURE REFERENCE \
?Olchowy, G.A. and Sengers, J.V.,
? "A simplified representation for the thermal conductivity of fluids in the
? critical region,"
? Int. J. Thermophysics, 10:417-426, 1989.\
?\
?as applied to R134a by:\
?Perkins, R. (1997). National Institute of Standards and Technology, personal
? communication, fit of IUPAC round robin data.\
?\
!end of info section
240.0              !lower temperature limit [K]
410.0              !upper temperature limit [K]
20000.0            !upper pressure limit [kPa]
14.70              !maximum density [mol/L]
9  0  0  0         !# terms:  critical-terms, spare, spare, spare
1.0     1.0     1.0     !reducing par for T, rho, tcx
0.630              !gnu (universal exponent)
1.239              !gamma (universal exponent)
1.03               !R0 (universal amplitude)
0.063              !z (universal exponent--not used for t.c., only viscosity)
1.00               !c (constant in viscosity eqn = 1/[2 - (alpha + gamma)/(2*nu)], but often set to 1)
1.94d-10           !xi0 (amplitude) [m]
0.0496             !gam0 (amplitude) [-]
5.285356d-10       !qd_inverse (modified effective cutoff parameter) [m]
561.411            !tref (reference temperature) [= 1.5 * 374.274 K]


#ETA               !viscosity model specification
VS1  pure fluid viscosity model of Laesecke (1998).
?LITERATURE REFERENCE \
?Laesecke, A., NIST (laesecke@boulder.nist.gov); Unpublished 1998 correlation R134aFitSelDV
?
?\
?The uncertainty in viscosity is 1.5% along the saturated liquid line, 3% in
?the liquid phase, 0.5% in the dilute gas, 3-5% in the vapor phase, and 5%
?in the supercritical region, rising to 8% at pressures above 40 MPa.
?Below 200 K, the uncertainty is 8%.
?\
!end of info section
169.85             !lower temperature limit [K]
500.0              !upper temperature limit [K]
100000.0           !upper pressure limit [kPa]
17.05              !maximum density [mol/L] (rho on melting line at 100 MPa)
1                  !number of terms associated with dilute-gas function
CI1                !pointer to reduced effective collision cross-section model
0.468932           !Lennard-Jones coefficient sigma [nm]
299.363            !Lennard-Jones coefficient epsilon/kappa [K]
1.0    1.0         !reducing parameters for T, eta
0.215729d0  0.50d0 !=0.021357*SQRT(MW)  [Chapman-Enskog term]
9                  !number of terms for initial density dependence
299.363    0.0620984      !reducing parameters for T (=eps/k), etaB2 (= 0.6022137*sigma**3)
-0.19572881d+2   0.00d0   !coeff, power in T* = T/(eps/k)
 0.21973999d+3  -0.25d0
-0.10153226d+4  -0.50d0
 0.24710125d+4  -0.75d0
-0.33751717d+4  -1.00d0
 0.24916597d+4  -1.25d0
-0.78726086d+3  -1.50d0
 0.14085455d+2  -2.50d0
-0.34664158d+0  -5.50d0
 -3 7 1 2 0 0        !# resid terms:  close-packed density;  simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
374.21    5.0170613    1.0d3       !reducing parameters for T, rho, eta (Laesecke correlation in terms of mPa-s, convert to uPa-s)
 3.163695635587490      0.00       !alternative form for del10; numerator term
-0.8901733752064137d-1  1.00       !alternative form for del10; denominator terms
 0.1000352946668359     2.00       !alternative form for del10; denominator terms
-0.2069007192080741d-1  0.00  1.00  0.00  0  !beta1; powers of tau, del, del0; power of del in exponential [0 indicated no exponential term present]
 0.3560295489828222d-3 -6.00  2.00  0.00  0  !beta2
 0.2111018162451597d-2 -2.00  2.00  0.00  0  !beta3
 0.1396014148308975d-1 -0.50  2.00  0.00  0  !beta4
-0.4564350196734897d-2  2.00  2.00  0.00  0  !beta5
-0.3515932745836890d-2  0.00  3.00  0.00  0  !beta6
-0.2147633195397038     0.00  0.00 -1.00  0  !beta7
 0.2147633195397038     0.00  0.00  0.00  0  !beta7 in non-simple poly term
 1.000000d+0            0.00  0.00  1.00  0  !del0 term in denominator
-1.000000d+0            0.00  1.00  0.00  0  !-del term in denominator
NUL                !pointer to critical enhancement auxiliary function (none used)


#AUX               !reduced effective collision cross-section model specification
CI1  reduced effective collision cross-section model (empirical form in terms of log(T*))
?LITERATURE REFERENCE \
?reduced effective collision cross-section of Wilhelm & Vogel as reported by:\
?Laesecke, A.,(laesecke@boulder.nist.gov); Unpublished correlation R134aFitSelDV
? see ftp://ftp.boulder.nist.gov/pub/fluids/NIST_Data/Viscosity/StandardReferenceCorrelations/
?\
!end of info section
134.86             !lower temperature limit [K]
500.0              !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
3                  !number of terms
 0.355404d+0  0   !coeff, power of Tstar
-0.464337d+0  1
 0.257353d-1  2


@TRN               !transport model specification
ECS  Extended Corresponding States model (R134a reference); predictive mode.
?LITERATURE REFERENCES \
?Klein, S.A., McLinden, M.O., and Laesecke, A.,
? "An improved extended corresponding states method for estimation of
? viscosity of pure refrigerants and mixtures,"
? Int. J. Refrigeration, 20:208-217, 1997.
?\
?McLinden, M.O., Klein, S.A., and Perkins, R.A.,
? "An extended corresponding states model for the thermal conductivity
? of refrigerants and refrigerant mixtures,"
? Int. J. Refrigeration, 23:43-63, 2000.
?
!end of info section
169.85             !lower temperature limit [K]
600.0              !upper temperature limit [K]
70000.0            !upper pressure limit [kPa]
15.60              !maximum density [mol/L]
FEQ R134a.fld
VS1                !model for reference fluid viscosity
TC1                !model for reference fluid thermal conductivity
1                  !Lennard-Jones flag (0 or 1) (0 => use estimates)
0.50647            !Lennard-Jones coefficient sigma [nm] for ECS method
288.82             !Lennard-Jones coefficient epsilon/kappa [K] for ECS method
1  0  0                       !number of terms in f_int term in Eucken correlation, spare1, spare2
 1.3200d-3   0.0   0.0   0.0  !coeff, power of T, spare 1, spare 2
1  0  0                       !number of terms in psi (visc shape factor): poly,spare1,spare2
 1.0000d+0   0.0   0.0   0.0  !coeff, power of Tr, power of Dr, spare
1  0  0                       !number of terms in chi (t.c. shape factor): poly,spare1,spare2
 1.0000d+0   0.0   0.0   0.0  !coeff, power of Tr, power of Dr, spare


#STN        !surface tension specification
ST1  surface tension model of Okada and Higashi (1994).
?LITERATURE REFERENCE \
?Okada, M. and Higashi, Y.,
? "Surface tension correlation of HFC-134a and HCFC-123,"
? CFCs, The Day After (Proceedings of the Joint Meeting of IIR
? Commissions B1, B2, E1, and E2), Padua, Italy, 541-548, 1994.\
? as reported by:\
?Tillner-Roth, R. and Krauss, R.,
? "R134a--Extended Thermophysical Properties,"
? Paris: International Institute of Refrigeration, 1995.\
?
!end of info section
169.85             !lower temperature limit [K] (Higashi states 230 K, but should extrapolate)
374.21             !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
1                           !number of terms in surface tension model
374.21                      !critical temperature used in fit (dummy)
 0.06016     1.260          !sigma0 and n


#PS         !vapor pressure equation
PS6  vapor pressure equation of Tillner-Roth & Baehr (1994).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
169.85             !lower temperature limit [K]
374.18             !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
374.18  4056.29    !reducing parameters
4 0 0 0 0 0                 !number of terms in equation
 -7.686556           2.     !coefficients and exponents
  2.311791           3.
 -2.039554           4.
 -3.583758           8.


#DL         !saturated liquid density equation
DL2  saturated liquid density equation of Tillner-Roth & Baehr (1994).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
169.85             !lower temperature limit [K]
374.18             !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
374.18  5.0787988  !reducing parameters
3 0 0 0 0 0                 !number of terms in equation
1.706155924          1.     !coefficients and exponents
0.937553068          2.
0.373002702         10.


#DV         !saturated vapor density equation
DV4  saturated vapor density equation of Tillner-Roth & Baehr (1994).
?LITERATURE REFERENCE \
?See EOS
?\
!end of info section
169.85             !lower temperature limit [K]
374.18             !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
374.18  5.06566567 !reducing parameters
5 0 0 0 0 0                 !number of terms in equation
 -2.837294           1.     !coefficients and exponents
 -7.875988           2.
  4.478586           1.5
 -14.140125          6.75
 -52.361297          16.5


@END
c        1         2         3         4         5         6         7         8
c2345678901234567890123456789012345678901234567890123456789012345678901234567890


Older formulation of Laesecke that has been replaced with the 1998 unpublished
version given above:

@ETA               !viscosity model specification
VS1  pure fluid viscosity model of Laesecke (2000).
?LITERATURE REFERENCE \
?Laesecke, A.,
? "Data reassessment and full surface correlation of
? the viscosity of HFC-134a (1,1,1,2-tetrafluoroethane),"
? submitted to J. Phys. Chem. Ref. Data, 2000.
?\
?The uncertainty in viscosity is 1.5% along the saturated liquid line, 3% in
?the liquid phase, 0.5% in the dilute gas, 3-5% in the vapor phase, and 5%
?in the supercritical region, rising to 8% at pressures above 40 MPa.
?Below 200 K, the uncertainty is 8%.
?\
!end of info section
169.85             !lower temperature limit [K]
500.0              !upper temperature limit [K]
100000.0           !upper pressure limit [kPa]
17.05              !maximum density [mol/L] (rho on melting line at 100 MPa)
1                  !number of terms associated with dilute-gas function
CI1                !pointer to reduced effective collision cross-section model
0.50647            !Lennard-Jones coefficient sigma [nm]
288.82             !Lennard-Jones coefficient epsilon/kappa [K]
1.0    1.0         !reducing parameters for T, eta
0.215729d0  0.50d0 !=0.021357*SQRT(MW)  [Chapman-Enskog term]
13                 !number of terms for initial density dependence
288.82    0.07823693      !reducing parameters for T (=eps/k), etaB2 (= 0.6022137*sigma**3)
-0.17999496d+1   0.00d0   !coeff, power in T* = T/(eps/k)
 0.46692621d+2  -0.50d0
-0.53460794d+3  -1.00d0
 0.33604074d+4  -1.50d0
-0.13019164d+5  -2.00d0
 0.33414230d+5  -2.50d0
-0.58711743d+5  -3.00d0
 0.71426686d+5  -3.50d0
-0.59834012d+5  -4.00d0
 0.33652741d+5  -4.50d0
-0.12027350d+5  -5.00d0
 0.24348205d+4  -5.50d0
-0.20807957d+3  -6.00d0
2 3 2 2 0 0        !# resid terms:  close-packed density;  simple poly; numerator of rational poly; denominator of rat. poly; numerator of exponential; denominator of exponential
374.18    4.9788302    1.0d3       !reducing parameters for T, rho, eta (Laesecke correlation in terms of mPa-s, convert to uPa-s)
 3.073830d+0     0.00              !c4; power of tau for del0
 0.482539055d+0  1.00              !c3*c4
-0.331249d-1  0.00  1.00  0.00  0  !c1; powers of tau, del, del0; power of del in exponential [0 indicated no exponential term present]
-0.468509d-3  0.00  2.00  0.00  0  !c2
 0.306398d+0  0.00  0.00 -1.00  0  !-c5
-0.306398d+0  0.00  0.00  0.00  0  !c5
 0.215221d+0  0.00  1.00  0.00  0  !c6
 1.000000d+0  0.00  0.00  1.00  0  !del0 term in denominator
-1.000000d+0  0.00  1.00  0.00  0  !-del term in denominator
NUL                !pointer to critical enhancement auxiliary function (none used)


#AUX               !reduced effective collision cross-section model specification
CI1  reduced effective collision cross-section model (empirical form in terms of log(T*))
?LITERATURE REFERENCE \
?reduced effective collision cross-section of Wilhelm & Vogel as reported by:\
?Laesecke, A.,
? "Data reassessment and full surface correlation of
? the viscosity of HFC-134a (1,1,1,2-tetrafluoroethane),"
? submitted to J. Phys. Chem. Ref. Data, 2000.
?\
!end of info section
134.86             !lower temperature limit [K]
500.0              !upper temperature limit [K]
0.0                !(dummy) upper pressure limit
0.0                !(dummy) maximum density
5                  !number of terms
 0.2218816d+0  0   !coeff, power of Tstar
-0.5079322d+0  1
 0.1285776d+0  2
-0.8328165d-2  3
-0.2713173d-2  4


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -